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Unified Field Theory From Enlarged
Transformation Group. The Consistent Hamiltonian
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A theory has been presented previously in which the geometrical structure of a real
four-dimensional space time manifold is expressed by a real orthonormal tetrad, and the
group of diffeomorphisms is replaced by a larger group. The group enlargement was ac-
complished by including those transformations to anholonomic coordinates under which
conservation laws are covariant statements. Field equations have been obtained from
a variational principle which is invariant under the larger group. These field equations
imply the validity of the Einstein equations of general relativity with a stress-energy
tensor that is just what one expects for the electroweak field and associated currents.
In this paper, as a first step toward quantization, a consistent Hamiltonian for the the-
ory is obtained. Some concluding remarks are given concerning the need for further
development of the theory. These remarks include discussion of a possible method for
extending the theory to include the strong interaction.
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1. INTRODUCTION

In Sections 1 and 2, we describe a theory in which the classical (unquan-
tized) gravitational and electroweak fields appear as manifestations of geometrical
structure in a real four-dimensional space—time manifold. In Section 3, we ob-
tain the Hamiltonian for the theory as a first step toward quantizing the theory. In
Section 4, we make some concluding remarks concerning the further development
of the theory. One of these remarks suggests a method for extending the theory to
include the strong interactionNpte In several prior papers, one of us (Pandres,
1981, 1984a,b, 1995, 1998, 1999), has based the theory, not on a manifold, but on
a space in which paths, rather than points are the primary elements. In this paper,
however, we show that the theory can be based entirely on a manifold.]
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Itis well known that any general relativistic metgg, may be expressed in
terms of an orthonormal tetrad of vectdrs. The expression is

G = gijh,h! (1)

where g; = ¢! =diag(-1, 1, 1, 1), and the summation convention has been
adopted. Indices take the values 0,1,2,3,@fds defined byg"*g,, = 8§/, where

8! is the Kronecker delta. Latin (tetrad) indices are raised and lowered byglsing
andg;j, just as Greek (space time) indices are raised and lowered bygiSiagd

0. Partial differentiation is denoted by a comma. Covariant differentiation with
respect to the Christoffel symbbF,,, = %g"‘"(gau,v + 9ov,u — Ouv,0) is denoted

by a semicolon.

1.1. Motivation

We recall (Pandres, 1962, 1999) an argument which is a generalization of the
“elevator” argument that led Einstein from special relativity to general relativity.
The special relativistic equation of motion for a free particle is

d?x

ds?
where—ds? = g;;dx dx!. Consider the image-equation of this free-particle equa-
tion under the transformation

=0, 2

dx' = hl dx* (3)

where the currf'ﬂU =h',, —h',, is not zero. Equation (3) establishes a one-to-

one correspondence betwrdlnate increments d>anddx*. Sinceh', =

h .., is not zero, we cannot integrate Eq. (3) to get a one-to-one correspondence
between coordinate andx"*. However, it follows from Eq. (3) theffX. = hi, &
Upon differentiating this with respect & using the chain rule, and multiplying

by h{*, we see that Eq. (2) may be written
dx* dx"

d?x« -

—— +h*h', ,——=0. 4

gg MM g s = O @
We follow Eisenhart (1925) in defining Ricci rotation coefficients Jb)ﬂ .=
h' ., =h',, —hi 7. Multiplication byh* givesh®h' , , = T%,, + ¢ v @nd
upon using this in Eq. (4) we have

d2x« dx* dx" dx* dxV

O pe OO e OXTOXD 5
a2 T m s ds — Y v ds ds ®)

The relationy,,,j = hLijah? illustrates our general method for converting be-
tween Greek and Latin indices.
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Now, the affine connection for spin in general relativity is expressed in terms
of the Ricci rotation coefficients by, = $yj,(v'y! — yJy') + a1, where the
y' are the Dirac matrices of special relativityjs the identity matrix, and,, is
an arbitrary vector. It is well known that the spin connection contains complete
information about the electromagnetic field, and that one half of Maxwell's equa-
tions are identically satisfied on account of the existence of the spin connection.
Furthermore, the manner in which the electromagnetic field enters the spin con-
nection is in agreement with the principle of minimal electromagnetic coupling.
An understanding of the spinor calculus in Riemann space, and the role played by
the spin connection, was gained through the work of many investigators during the
decade after Dirac’s discovery of the relativistic theory of the electron; see e.g.,
Bade and Jehle (1953) for a general review. Many of these investigators recog-
nized the description of the electromagnetic field as part of the spin connection. An
especially lucid discussion of this has been given by Loos (1963). The subsequent
unification of the electromagnetic and weak fields by Weinberg (1967), and Salam
(1968) causes us to expect that the spin connection might also contain a description
of the weak field.

We now recall (Pandres, 1995) calculations that suggest that the electroweak
fieldis described bi¥ i, the “mixed symmetry” part of,,,; under the permutation
group on three symbols. One may object to usipg to describe the electoweak
field sinceyj, is used in the spin connection. However, these geometric objects
cannot be considered to be the same since the method of converting from one
to the other is not just a diffeomorphism but invoh.h%; Thus the components
of y,.i are independent of the components)gf,, although if one is zero the
other is also zero. The totally symmetric part)gf,; vanishes becausg,,; is
antisymmetric inu andv. Thus, we have,,; = M,.i + A..i, whereA,,,; is the
totally antisymmetric part. Clearlya“,,, makes no contribution to the right side
of Eq. (5), so

d2x« dx* dx*  dx* -
W—}—F“ Z—Mauivl, (6)

"'ds ds ~ ds
wherev' = % is the (constant) first integral of Eq. (2). The totally antisymmetric
part ofy,,; is

1
A;,wi = é(ypwi + Yipv + Vvip,)- (7)

Thus, the mixed symmetry partM,,.i = y,.i — Awi, SO, we have

1
M;wi = §(2y;wi —Yip — Vvi;t)- (8)

Definef,, := h;,,, — hiyw = hiyv — hiy, sothatfi,, = %, — viuw. The
antisymmetry ofy,,,; in its first two indices may be used to obtain an expression
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for My,i in terms of f; ,,,. If we subtract from this the corresponding expressions
for f,.i andf,,, we see thag,, = %(fi,w — fui — fiiu). By using this and the
corresponding expressions f@ar,,,, andy,, in Eq. (8), we obtain

1
M;wi = §(2fi;w - f;,wi - fuip,)y (9)
which may be written
1
Mini = 3 (2875387 — W87 — hhES7) fr, (10)

wheregsy is the Kronecker delta. It is important to notice that Eq. (10) may be
rewritten into the form

1 ago Ao a Qo
Muvi == é(ZSiHSM(SU - hTL(SU hi - hgh| (Sl‘-) Snaa: (11)
where
gi;w = fi;w + a)ijkh/thI:1 (12)

andeyjjk is the Levi—Civita symbol. In rewriting Eq. (10) as Eq. (11), we have used
the easily verifiable fact that
(2815287 — hiseh? — hihe's7) epnjchlh = 0.

Now, i, is the usual field strength (see e.g., Nakahara, 1990) {1 x
SWU2) gauge fieldprovided that Iﬁ is transformed on its tetrad indices as a gauge
potential rather than as a Lorentz vector. We wish to make it clear that we will not
require thah‘u be transformed as a gauge potential. In our view, the need for such a
transformation rule arises from the fact that coordinate transformations are limited
to the diffeomorphisms. In Section 2, we enlarge the group of diffeomorphisms to
the conservation group. The mass-changing effect of a nondiffeomorphic conser-
vative transformation is similar to what one would gétijfwere to be transformed
as a gauge potential. It is eminently reasonable that when a particle is subjected to
a rotation in isospace the gravitational field may change.

From Eqg. (11), we see that in the expression, Eq. (10)Mgy;, the curl
fney may simply be replaced by the gauge figld, . Thegn,, may be viewed
as a field with “bare” or massless quanta, which are “clothed” by the factor
(2878285 — his2h? — hihes7), and thus may acquire mass. The analysis in
Section 2.4 suggests thdt,,; may describe the physical electroweak field as
it appears in the appropriate way in our Lagrangian, and in the stress-energy
tensor of the Einstein equations. For this identification to be valid, the quantity
Mo = %(2 fow — fuvo — fuoe) Must describe the electromagnetic field; hence,
it must be the curl of a vector. The presence of the ternfig,o — f,0, May cause
one to ask howM,,,; can be identified as the electroweak field.
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Our answer is this: The orthodox physical interpretation, which we adopt, is
thathiﬂ describes an observer-frame. Novh‘,jfdescribes afreely falling, nonrotat-
ing observer frame, our expression for, M reduces to N,o = % fouw. This may
be seen as follows. The condition for a freely falling, nonrotating frame (Synge,
1960) ish;,,xh3 = 0. In terms of the Ricci rotation coefficients, the condition is
Ywo = 0. From this and Eqg. (8), we see that forrai,pwhich describes a freely
falling, nonrotating observer fram#l,..o = 3(vouu — Youv) = 3(Novi — Noypn) =
%(hov,u — hou,v) = 3 fo.u. Moreover, in the nonrelativistic limit (i.e., for, v2, v2
small compared to one), the electromagnetic téffﬂ\/lﬂaovo dominates the right
side of Eq. (6).

2. GRAVITATIONAL AND ELECTROWEAK UNIFICATION

Itis clear that no meaningful physics can be done without an observer. Thus the
principle of parsimony (Occam’s razor) suggests that we consider a theory in which
the observer—framh‘u is the only fundamental field; i.e., in which geometrical
structure is expressed Wy, rather than byg,,. For this purpose we need an
invariant Lagrangian constructed froh‘;l and its derivatives, to be used in a
variational principle (analogous to the Hilbert variational principle for gravitation,
but with h!, varied rather tha,,).

2.1. Weitzenlock Invariants

Soon after Einstein (1928a,b) introduced tetrads into physics, Weiiz&nb™
(1928) considered quantities constructed frbjpand its derivatives which are
invariant under the diffeomorphisms (the coordinate transformations of general
relativity). Weitzenlock listed the invariants

1., 1. 1 1 )
A= i f'f, B= 2 fl i, @ = ZC”CV Y= E(Cfv + C"hi“h'ﬂyu)
where the vecto€, is defined by
C,=h'fl . (13)

As Weitzenlwck noted, the most general Lagrangian which yields second-order
field equations that are linear in the second derivativdai;dl’s L=aA+bB+
¢® + YW, where the coefficients, b, ¢, ¥ are constants.

In order to optimize clarity in our discussion, we shall use an equivalent list
of invariants

Wy = ' f,0 W= f"f,, Wy=C"'C, Wy=C.. (14)
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That our list is equivalent to WeitzenbK's is clear, becaus#; = 4A, W, =
4B, W; = 49, and W, = C', + C*T"",, = (C", +C*h’h' ), ) — CH(h'h' ), ,—
rv,,)=2¥ — C*h'n'h',, —T",,). We see from the definition df*,, and
Eq. (1) thatT,, = zg“”ggw h'h', .. Thus, we havew, = 2¥ — C*h’
(h'y, —h', ) =20 —Crn'fl,, = 2\1/ CHC, =20 — 4.

Clearly, we may write the Lagrangian as

L = kWi + koW + kaWs + kgW;y (15)

where the coefficientls;, ko, ks, k4, are constants.

Weitzenlwck recognized that if the fields to be varied are just the compo-
nents ofg,,, then there is essentially no freedom of choice for the coefficients.
He showed that except for a common multiplicative constant, one must choose
a=-2b=-1¢=-4y =4iek=—3k=—3k =11k =2 With
this choicel is just the Ricci scalaR, which is the Lagrangian for the free gravita-
tional field. However, since the fields to be varied in our theory are the components
of h'M, there exists a hondenumerable infinity of inequivalent Lagrangians corre-
sponding to different ratios of the constakisky, ks, k4. Thus, we are confronted
with a dilemma that was anticipated by Einstein (1949). He noted that with the
introduction of a richer structure (such as our tetrad), the diffeomorphism group
“will no longer determine the equations as strongly as in the case of the symmetric
tensor as structure.” Einstein also suggested the solution for this dilemma: “There-
fore it would be most beautiful, if one were to succeed in expanding the group once
more, analogous to the step which led from special relativity to general relativity.”
Einstein’s suggestion was in accord with the prophetic statement by Dirac (1930)
that “The growth of the use of transformation theory, as applied first to relativity
and later to the quantum theory is the essence of the new method in theoretical
physics. Further progress lies in the direction of making our equations invariant
under wider and still wider transformations.” Dirac went on to remark “This state
of affairs is very satisfactory from a philosophical point of view, as implying an
increasing recognition of the part played by the observer in himself introducing
the regularities that appear in his observations.Dirac’s remark supports our
use of the observer—fran’rti; as the only fundamental field.

In Section 2.3, we shall see tHatW; + koW, is not invariant under a group
larger than the diffeomorphisms for any choice of the constentndk,. By
contrastksWs + ksW; is invariant under a group larger than the diffeomorphisms
for arbitrary choice oks andk,. But, W, = C! is a covariant divergence; so, the
termk,4W,; would make no contribution to fleld equations. Hence, we shall choose
for our Lagrangian the invariaMi; = C"C,.. We shall see that this Lagrangian is
justthe sum of the gravitational LagrangiBand terms which we tentatively label
as the electroweak Lagrangi&n The termsR andE are each invariant only under
the diffeomorphisms; it is their sum that is invariant under the larger group. By
using Eq. (12), we also note th@t may be rewritten into the forr@, = h‘“&,w.
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Thus, in the expression f&,, just as in the expression fdd,,,;, the curl f; ,,
may simply be replaced by the gauge figld,.

2.2. Holonomic and Anholonomic Coordinates

Itis possible to establish a one-to-one correspondence betweenxofiie
manifold and coordinateg’ (atleastin finite coordinate patches). Such coordinates
are called (Schouten, 19549lonomiccoordinates. Let transformation coefficients
Xf; have a nonzero determinant, and let the componer)(% tiave definite values
at each point x. Then, these components are one-valued functions of holonomic
coordinates, i.e X% = XZ(x?). The relation

dx? = XE(x7) dx* (16)

establishes a one-to-one correspondence between coordinate incrénteas!
dx*. The inverse relation to Eq. (16) is

dx# = XE(x7)dx® (17)

where X#(x°) is defined byX% X% = 8. Eq. (16) may be integrated to give a
one-to-one correspondence between coordindtesdx® if and only if

X%, , — X%, , =0. (18)

Thus, if Eq. (18) is satisfied, the® are also holonomic coordinates. If Eq. (18) is
notsatisfied, then thg® are called (Schouten, 1954hholonomic coordinates

There does not exist a one-to-one correspondence between pahthe
manifold and anholonomic coordinates. Thus, in an equation such as Eq. (17), the
holonomic coordinateg® cannot be eliminated in favor of anholonomic coordi-
natesx?. A transformation to anholonomic coordinates must be accompanied by
what Schouten calls a “mitschleppen,” i.e., a “dragging along” of the holonomic
coordinates. (In this sense, holonomic and anholonomic coordinates are not on
the same footing. They can be put on the same footing through the introduction
of a path space, as we have done in several prior papers. In this paper, however,
our setting is a manifold.) We can enlarge the covariance group so that it includes
transformations to anholonomic coordinates, because our group elements are the
transformation coefficients (which have definite values at each ghint

We shall need partial derivatives with respect to anholonomic as well as
holonomic coordinates. L&t be a function with a definite value at each point
If x* andx? are both holonomic, the relation betweEp andF ; is

Fa=F, X, (29)

Thus, regardless whethgf is holonomic or anholonomic, we may take Eq. (19)
as thedefinitionof F ; (wherex® remains holonomic). Let the coordinateésalso
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be either holonomic or anholonomic. Then, of coufsg,= F , X, and we easily
find thatF s = F ; X*4, whereX*s = XX X¢.

2.3. The Conservation Group

The transformation law for a tetrad of vectors is
hi, = hi X%, (20)
Upon differentiating Eq. (20) with respect x4, we have
'y =ha, XE+hEX®, = hlg s XIXE +h X,

If we subtract this from the corresponding expression witndv interchanged,
we obtain

fl = Flas XEXT +h (X%, — X¥,) (21)
where f'z; = h's 3 —h'z 5. We see from Eq. (21) that' ,, transforms as a
tensor if and only |f Eqg. (18) is satisfied, i.e., if and only if the transformation is a
diffeomorphism. We also see from Egs. (14) and (21) that no linear combination
of Wy and W, with constant coefficients is invariant under a larger group than
the diffeomorphisms. By contrast, if we multiply Eq. (21) by = h? X}f and use
Eqg. (13), we get

Co = CaX¥ + X5 (X%, — X%,0). (22)
We see from Eq. (22) th&, transforms as a vector if and only if
X2 (X%, — X%0) = 0. (23)

Accordingly, we recall (Pandres, 1981) ti@tC, is invariant under transforma-
tions that satisfy Eq. (23).

2.3.1. Conservative Coordinate Transformations

In the discussion that led to Eq. (23% was required to be holonomic.
We now relax that requirement and allow and/orx® to be either holonomic or
anholonomic. A transformation which satisfies Eq. (23) is caltetservativeThis
terminology is appropriate for the following reason: A relativistic conservation law
is an expression of the forMg, = 0, whereV“ is a vector density of weight 1.
This is a covariant statement under a coordinate transformation rekdtiagdx®
if and only if it implies and is implied by the reIanOW’ = 0. The transformation
law for a vector density of weight1isV¢ = E’X X"‘V“ Where < is the (nonzero)
Jacobian determinant of; . Upon differentlatlng/“ with respect tox?, we obtain
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4 :(g—§ X&) sVH + %V‘; For arbitraryV'*, we see that a conservation law is a
covariant statement if and only if

(ax xg) “=0. (24)

For this reason, we call a coordinate transformation conservative if it satisfies
Eqg. (24). Now,

0X =\ & aX oX _ =~ aX aXx
_Xa o Xa X(X & M _X(X XE
<a>~< ”> (ax) NPT EART <8x> oz *

so, if we use the well-known formula

8_X H= th X'

aX aX
for the derivative of a determinant, and note thtX"; , = — X%, , X%, we find
that Eq. (24) is equivalent to Eq. (23).

2.3.2. The Conservation Group

We now recall (Pandres, 1981) an explicit proof that the conservative co-
ordinate transformations form a group. [D. Finkelstein (private communication,
1981), however, has pointed out that the group property follows implicitly from the
derivation given above.] First, we note that the identity transformatfor x* isa
conservative coordinate transformation. Next, we consider the result of following
a coordinate transformation frort to x® by a coordinate transformation froxf
to x%. Upon differentiating

X% = X5XP (25)
with respect tax”, subtracting the corresponding expression witandv inter-
changed, and multiplying bX} we obtain

XE(X, 0= X¥ ) = XEXE(X%5 5 — X¥5.6) + X2(XPy 0 — XP ). (26)

We see from Eq. (26) that X5(X?,,, — X?,,,) andXZ(X%5,; — X¥; 5) vanish,

then X3 (X%, . — X%,,,) vanishes. This shows that if the transformations from
x* to x¥ and fromx? to x are conservative coordinate transformations, then the
product transformation from* to x is a conservative coordinate transformation.
Ifwe letx® = x*, we see from Eq. (26) that the inverse of a conservative coordinate
transformation is a conservative coordinate transformation. From Eq. (25), we see
that the product of matrice)sfj andxg (which represent the transformations from

x* to x* and fromx® to x?, respectively) equals the matr¥¢ (which represents

the product transformation froxt to x%). It is obvious, and well known, that if
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products admit a matrix representation in this sense, then the associative law is
satisfied. This completes the proof that the conservative coordinate transformations
form a group, which we call the conservation group.

To show that the conservation group contains the diffeomorphisms as a proper
subgroup, we need only exhibit transformation coefficients which satisfy Eq. (23),
but do not satisfy Eq. (18). Let

X = 6% + 5G87x". (27)

Upon differentiating Eq. (27) with respectxé and subtracting the corresponding
expression withe andv interchanged, we obtain

X, 0= X%, = 85(8562 — 5182). (28)
A nonzero component of Eq. (28) )@,1 — ng = 1, which shows that Eq. (18)
is not satisfied. It is easily verified that

Xy =82 — sys2xt (29)

satisfies our conditionXs X = §*. If we multiply Eq. (28) by Eq. (29), we see
that Eq. (23) is satisfied.

2.4. The Lagrangian

We now recall (Pandres, 1999) evidence that the invakiént= C'C, is an
appropriate Lagrangian for gravitational and electroweak unification.

The Riemann tensor is defined as usualRS,, = h*(h'4.,.., —hig.,.,.)
while the Ricci tensoR,, and Ricci scalaR are defined, as usual, iy, =
R*.0v @nd R = Re. By usinghfh' g, = (' g, ),0 — Wi g = v g0 +
Y%svy? g, We easily find that

R = ¥ gy — ¥V o + %00 ¥ — ¥ on 7’ - (30)
From Eg. (13), we see th&@, = h’(h',, —h', ) = hi“(hiﬂ;v - h‘v;u) =y —
Y oy =¥ - By usingC, = y”,,, we find from Eq. (30) that
R = Cpuov = Co¥* v — ¥ v + ¥ %00 ¥ s (31)
and, from Eq. (31)
CHCu = R+ y"" ¥ — 2CL. (32)

Thefirsttermontherightside of Eq. (32) is the Ricci scalar, which is the Lagrangian
for gravitation. The last term is a covariant divergence, which contributes nothing
to the field equations. We now consider the interpretation of the {efffy,,..
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From Egs. (7) and (8), we see that
AYTM,,,i =0, (33)
and that
Mywi + Mi + My, = 0. (34)
From y,.,i = M + A, and Eq. (33), we gety y,.i = MHVM,,i —

ATAL But, MMYM,i = 3 MUY M+ SMYEM, i = MEYM, +

IMIEM,, = 3 (MAY 4+ M) M, = SM#1M,,i, where we have used
Eq. (34). Thus, we have’ "y, = sM#IM,,,; — AW*A,,,. We now define
a vector

1
A= () 2 Ay, (35)
and find that
AN, = —BAMA,. (36)

In obtaining Eq. (36), we have used the well known identity (see e.g., Weber,
1961) for expressing the product of two Levi—Civita symbols as a determinant of
Kronecker deltas. We now see that Eq. (32) may be written

1 )
C‘C, =R+ E|\/|W' My + 6A*A, —2CL. (37)

The termM#' M,,,; is in the form of the usual electroweak Lagrangian, and the
A* A, term has precisely the form that is needed (see e.g., Moriyasu, 1983) for
the introduction of mass.

2.5. Field Equations

We have previously (Pandres, 1981) considered the variational principle
S/C“C,“/_—g d*x =0

whereh!, is varied. We note thaf/—g equalsh, the determinant ofil,; and that
CH*C, = C'C;. Hence, our variational principle may be written

8 f C'Cihd*x = 0. (38)

The variational calculation (Pandres, 1984a) ushG; is less tedious than that
usingC#C,,. We find from Eqg. (38) that

/ h(2C'sC; — C'Cih¥shy) d*x = 0, (39)
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where we have useth = hhishk = —hhksh?. We note that

(hh') =h,h’ +hh'

= h(hih*,.,h! + hy h&h!)
= h(hgh®, .h* —hyhk, h)
= —hC,h! = —hC

Thus, we see that
C =-h7*(hh) .

W (40)
Variation of Eq. (40) givessC; = h=2(hh) ,6h — h=1§(hh) , = C;hkshy —

h—l[S(hhi”)]’v. Upon using this expression fé€; in Eq. (39), we obtain
/ hCkCyh'shy d*x — 2f C'[s(hht)] ,d*x =0, (41)
and, integration by parts gives
/h (cjv —hick + %hgckck) shy d*x — f [C's(hh)]  d*x=0. (42)

By using Gauss’s theorem, we may write the second integral of Eqg. (42) as an
integral over the boundary of the region of integration. We discard this boundary
integral by demanding tha's(hh") shall vanish on the boundary, and demand
thatsh! be arbitrary in the interior of the (arbitrary) region of integration. Thus,
we get field equation§’, — hi Ck + 1hi CkC, = 0, and, upon multiplying b}?,

we write these field equations as

, , 1.
C - 5IjC,kk + 55” ckce=0. (43)

We note thatC% = (C*hg),, = CK h¢ + Ckhe = CK hi + C*y2 . Thus, we
haveC¥ hi = C% + Cry%, . If we multiply by h,h?, we getC'; = h},h?(C% +
Cryg,), andCk = C% + C*C,. If we use these expressions fof; andC in
Eq. (43), we obtain the relatio,h? (C% + C”y“ ,,) — §;C% — 38;C*C, =0,
and, upon multiplying this by, h!, we rewrite our field equations as

1
Cu;v - Caya;w - guvc;‘z - Eg,uucaca =0. (44)

2.5.1. The Field Equations as Einstein Equations

The Einstein equations of general relativity may be interpreted in two ways.
One interpretation is as differential equations for the metric, when the stress-energy
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tensor is given. Alternatively, these equations may be looked upon as a definition of
the stress-energy tensor in terms of the metric. The second interpretation has been
stressed particularly by Sadatinger (1960) [“| would rather you did not regard
these equations as field equations, but as a definitidn tfie matter tensor.”] and
by Eddington (1924) [and we must proceed by inquiring first what experimental
properties the physical tensor possesses, and then seeking a geometrical tensor
which possesses these properties”. It is the second interpretation that we adopt.
From Egs. (31) and (32), we find that an identity for the Einstein tensor
G = Ruw — 39 Ris

1
G;w = C,u;v - Caya nwy guvc;ofx - Eg,uvcaca + yuau;a

1 )
+ Vaav VUM;Q + Eguv]/amyaai . (45)

Equation (44) just states that the first line on the right side of Eq. (45) vanishes.
Thus, we may write our field equations as

1 )
G/w = Vﬂf;a + VgUJ/Za + éguvymayotai . (46)

By using the well known symmetry of the Einstein tensor, i®&,, = G,,. we
see from Eq. (46) that the symmetric part of our field equations is

1 1 1 i
G;w = 5 y;f[u + yvau).a + 5 (Voiﬂtyava + ya(fﬂyaw") + Eg/wyalayaai . (47)

2 ( 2
Sincey®,, =M%, , + A¢ U,weseethat;(lf‘v + 9,50 =M + M2 ).p =
(M50, 4+ M2 h ) = Juihl + i), + M2y va+M %y %, wherel,; =

M, isa (conserved) electroweak current From Eq. (33), the repeated use of
Eq. (34) the total antisymmetry &, , and the antisymmetries of,, andM,,,,

in their first two indices, we find after a tedious but straightforward calculation
that Eq. (47) may be written

er - AI Aljv - éguvAIJaAijoz + E (J;ri hl\, + Jui hl,k) - M//.uu (48)

whereM,,, = M®; M’ — 20,,M**' M,,i. The terms in Eq. (48) that involve
ﬁq(jﬂ r;1a13//2 be written in a more simple form. From Eq. (35), we have=
3(—0)"

S}w &7 A5, and we find after a little work thad, = — 2 (—0)"? e,e5, A7
Thus, A, A, = —%0,, €7 8,5, A7 Ags,. By expressing the product of Levi—
Civita symbols as a determinant of Kronecker deltas, weget, = %A”MA”- y =
29, AT Ajj,. From this and Eq. (36), we see that Eq. (48) may be written

G = 2AA, + 9 A" A, + = (J/u h, + J,ihl,) — M. (49)
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The right side of Eq. (49) is just what one would expect for the stress-energy tensor
of the electroweak field, its associated currents, and gauge symmetry breaking
terms corresponding to those in the Lagrangian, Eq. (37).

2.6. Solutions of the Field Equations
2.6.1. Solutions WithC= 0

Itis clear that our field equations, Eq. (43) are satisfi€j &= 0. Consider the
tetradh!, = 3!, + 5ys2x*, wherex® is a Greek (space-time) coordinate. We have
shown (Pandres, 1981) that this tetrad yidl§ls= 0, gives a Ricci scalaR = %
and gives a metrig,, which satisfies the well known (Synge, 1960) Einstein
equations for a charged dust cloud.

2.6.2. Solutions With QConstant and Lightlike

It is also clear that our field equations are satisfie@jifis constant and
lightlike. Consider the tetrad

hi, =8, + (6o + 1), (" — 1) (50)

where the coordinate! is Greek. We have shown (Pandres, 1984a) that this tetrad
yields a nonvanishing but constant and lightl&e

2.6.3. Solutions With Gvhich Does Not Vanish, and Is
Neither Constant Nor Lightlike

It is clear from Sections 2.6.1 and 2.6.2 above that a tetrad satisfies our field
equations if it satisfies the condition of either vanishing or being constant and
lightlike. In a previous paper (Pandres, 1984a), we made the false assertion that
a tetrad satisfies our field equatioosly if it satisfies this condition. The false
assertion was based on the following argument: It is clear that for distinct values
of i andj, the field equations state th@t = 0. This fact led us to assume that
the componen€' can depend only on the single coordinatei.e., thatC0 can
depend only orx°; C1 only on x%, etc. This assumption would be true if the
Latin coordinates were holonomic, but is false, because they are anholonomic. An
example of a tetrad which satisfies our field equations, but yiel@swhich is
neither constant nor lightlike has been found by one of us (Green). His tetrad is

= [()7 = ()2 + () = ()] o (51)
In Eq. (51), the coordinated, x1, x?, x3 are Greek. The tetrad in Eq. (51) satisfies

our field equations, but yields; = (—6x°, —6x*, —6x2, —6x3) which is neither
constant nor lightlike.
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2.6.4. Solutions That Yield Flat Riemann Space—-Times

We note that our field equations admit nontrivial solutions for wigighis the
metric of a flat space—time. One of us (Green, 1991, reported in Pandres (1995))
has exhibited the tetrad

hi* = 8560 + 8582 + (86T + 8567) cosx® + (858T — 81'67) sinx®,  (52)

where the coordinate® is Greek. For thi$!*, the quantityM,,,; does not vanish,
but C; =0, andg,, = diag(-1, 1, 1, 1). He has also exhibited (Green, 1997,
reported in Pandres (1999)) the tetrad

1 1 1
h!* = > [(535? + 8181 <F + E) + (8588 + 876) <F — E)} + 8587 + 8582

(53)

whereF = x°+ x!, and the coordinates’ andx* are Greek. For thi&!", the
quantityM,,,; does not vanish, b@; is constant and lightlike, argj,, = diag(-1,
1,1, 1).

3. THE HAMILTONIAN

In this section the Hamiltonian for this theory will be derived. As the dy-
namics is constrained, the Dirac—Bergmann procedure will be used to find all the
constraints and to produce a consistent Hamiltonian.

3.1. The Primary Hamiltonian

Leth be the determinant d;f‘u as before. The 16 canonical position variables
are defined by
QY = hh*. (54)
Let Q|, be the matrix inverse oy, so thatQy Q}, = 5% andQ},Q% = 8}. Let Q
be the determinant @@¥. ThenQ = det(Q®) = dethh®) = h*h~1 = h?, and so,
h= Q%. Using Eq. (40) we have

C=-Q7:Q,, (55)
and therefore the Lagrangian density may be expressed by
L=g¢'Q",.Q",Q % (56)

The momenta are defined as usuaIFEzy— 8Q,L where Q¥ ¢ is the derivative

of Q! with respect to the GreeX’ variable. We’assume that t@ variable has
a time-like direction at each point in space—time. We also assume that the values
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of Qf and PL as well as their derivatives on a space-like suriacketermine the
dynamics. From Eq. (56) we have

i i 1
P, =2¢"Q";,80Q . (57)
For the remainder of this section we will use a bar over an index to indicate a

restriction of the index range to the values 1, 2, and 3. Thus there are 12 primary
constraints

P.=0 x=1,23 (58)

The four nonzero momenta are seen to be a multiple of the Latin components of
the curvature vector:

Py =29"Q"},Q 5 = —2¢C; = —2C". (59)

The Hamiltonian densitid is defined byH = P}L Q" o — L. Using the constraints
and Eq. (59), we have

_ 1 .
H=PQ%0— 20 PiP) Q3.

But using Eq. (55)Q% 0 = Q% — Q¥ , = —Qic — Qi = %Q%gij Pg B
Q" and therefore

H

1 o 1
55 PPy Qs — PoQ" i — 29 Po P Q:

1 S -
= 29i PoPe Q% — Po Qi

Hence we have the following primary Hamiltonian density
1 L o _
sz Zg” P(I)POJQ3 — P(I)Qﬂi’/j—i-viﬂp;z (60)

with Lagrange muItipIiersri’I. In cases wher€' is zero on the boundary of, a
partial integration yields the following primary Hamiltonian density:

1 - -
Hp = 20 Py PJ Q3 + QI'Plo s+ V/'PL, (61)

The full Hamiltonian isH, = [, Hpd3x.

3.2. The Dirac—Bergmann Procedure and the Consistent Hamiltonian

When the dynamics are constrained, consistency requires that the time deriva-
tive of a constraint must be zero. We follow the Dirac—Bergmann algorithm
(Bergmann and Goldberg, 1955; Dirac, 1964; Sundermeyer, 1982; Weinberg,
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1995) for constrained dynamics. The Hamiltonian equations of motion state that
for any functionX of Q{* andP, we have

OX_ i,y = DX 02X 0ty
Qi ok, 4P, Q;
Dirac refers to the constraint equations as weak equations, since one must be
careful to use these equations only after time derivatives and other variations are
calculated. We shall use to represent the variable of integration for the first
functional in the bracket ang to represent the variable of integration for the
second functional. When there is no possible confusion these variables will be
suppressed. We will also suppress display of the integralscoesrd only show
the integrands.
Since, in generalC; may have any value on the boundary, we proceed from

Eq. (60). SubstitutingV = g;; PjPs, and noting thang% = QQj, we have

dpP; SHp 1 1 i

it =308 = ~1aW @ Qe =) + Podax—y)

and thus for consistency

1 1A o (v )
1—2WQ Qed(x —y) — Pyda(x —y) =0,

which becomes after integration with respect to yheriable

1 . .
oW QG QL+ Py, =0 (62)
We assume fixed boundary conditions so that the variation on the boundary is

zero and thus the boundary term is zero. Equation (62) represents 12 secondary
constraints on the theory.

Before proceeding with the constraint algorithm a comment is in order.
Computation ofP'g o = [P} Hp], vields Pio o = —+W Q3 Q. Hence, we have
LwQiQ, + Pig, =0 fora =0, 1, 2, 3. SinceQ3 Q}, = hi, and Py = —2C!
andW = 4CkC, we see that Eq. (62) along with the dynamics Rrimply that
C,ii = %(Sij CKkCy which is the Latin form of the field equations.

Proceeding with the algorithm we note that multiplication of Eq. (62) by
QY(x) yields the condition

QP'os=0. (63)
The computation of further constraints is rather tedious. It will be useful to note

that% = —Q‘ﬁ Q);. Because of Eq. (63) we must require that
i
0=[QPP'og,Hp]

. 1
= Ploa (égij Py Q3 — Qi}/,;) 8 — QY(X)8 (x — ) - (ngk P Pcl)(QEQ'o> (y)
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After the integration with respect lyowe have

26iPloP Q! — PlosQli 7 + o (1P REQ! Qo) Q
=—g.JP'oaPoQ3—P'oaQy.y+ WQQﬁQkﬁ WQ3Q'oJQi°

1 1 Coi L . .
= 2 W Q! (—20; QrPJ QF +3Q5Q7 17+ QQfz — 3Q6 Q%)

In the last line, the secondary constraint Eq. (62) has been used. @iac8 is
not acceptable, we find that

W=0 or —2g;Q5PJQ% +3Q,Q"% ;+ Q,Qf; —3QLQ%; = 0. (64a,b)

Type | RegionsWe define Type | regions as simply connected regions of the
space-like surface whereW = 0. In Type | regions the secondary constraint
Eq. (62) implies thaP'y = 0 also. We then require that

SHp i1 1
0=[W, Hy] = —2g; Po QO —20ij P& : 1_2W Qs Qlo
and sinceW is assumed to be zero, this is automatically satisfied. Thus in the
W = 0 case, the algorithm terminates. The secondary constraints in this case may
be summarized by the four conditions:
Py =K/, (65)

whereK' is constant and lightlike. These represent four first class, secondary
constraints.

Type Il RegionsWe define Type Il regions as simply connected reglons of
o whereW is not |dent|cally zero. In this case we assume thag;; Q.- P' Qs +

3QL QY i+ Qﬁ QI 3Q0Q is identically zero. Returning to the constraint
given by Eq. (62) we require that

1o
0= [Tzw Q3 QL+ P(',’me}

1 1 ) 1 ; v i y
=gV (2Qog Qg PoQ* — 3Qp QL QY 7 + 3Q; QhvY
+ Q5 QEQL 7 — QEQV, — Q4 QY7 Qb — 3Q04).

If we assume thatWw and Q are not identically zero, then we have 12 tertiary
constraints:

0 = 2Q,gu QEPy Q% — 3QhQKQY , +3Q1Qkv + QLQ5QY
- QL — QS QL 7Qh — 3Q 0 (66)
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By multiplication by appropriate factors (ID{S we may split these 12 equa-
tions as follows. Multiplication of Eq. (66) b®? implies that 2j;; QLTPOj Q% —
3QKQ ;7 — Q5Qw & +3QKQ% = 0. Thisis equivalentto the three constraints
given in Eq. (64b). Next, multiplication of Eq. (66) b yields the single
constraint

QkQ”7 = 0. (67)

Finally, multiplication of Eq. (66) byQ{; results in the condition@'gv,’f —

%85 ';—vlf + QiOQfO7 = 0. Using Eq. (67) these nine equations are seen to be trace-
less and hence these eight equations may be used to reduce the number of unknown
Lagrange multipliers from 12 to 4. The result is

vl =1Qf +27Q0 - Q¥ , QL. (68)

where). andA? represent four arbitrary Lagrange multiplier functions. It follows
from Eq. (67) that we must require

0= [Qngk,in]

_ h) k 1 o B R 5 ;o

vl 1 i1 B —
= Q7 (-QiQ) (58 <§9n PoQs — Qfﬁ) +Vf‘>

+ Q08588 7(x — YV (Y)

= — Q"7 QuQoW — QoVi'a
where the constraints have been used and an integration by parts has been per-
formed on the second term. Now using Eq. (68) we find

W= (s + Q6QR) ¥ + QR (69)

This differential equation represents one condition on the 3 muItipli@rEinalIy
we proceed from the constraint given in Eq. (64b).

0= -2, Q:PJ Q} +3QLQ]; + Q5 Qs — 3QQ0% Hp
— (—26,P' 0% 0L} + 2gy PLOXO! O} + 307, -QXQL — 305 »
= | ~200PoQp Qe Q% + 59 P Qe Qp Q% +3Q7k 7 Qy Qr — 3Qud 5

+ Q"kaQ5Q) — Qls s —3Q% #Q, Q) + 3Q(j)5,a52>
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1 1 = g 1
: <5o’3 <§gij§Q3 - Qyii) "‘Vljg) — g QX QbamnPY"PJ QF.

Substituting forvfiusing Eq. (68) and using the constraints Egs. (62), (64b),
and (67) yield

1 : — 2 . 1 .
0 = g QP Q> (Ql;Qﬁi,ﬁ‘— éQ'ﬁQﬁi,a— EQI()QOi,a>
~ L guPtPle; QLQLQ!
12 0" 0Y] Xa <0
+5Q'04Q] ; — 3Q, 7@ 4 + 290 Q5P QL Q%1 7Q°
; 5 i = i = 1 1
— QoQf;7(3Q4 Q7,7 +2Q4Q71.4) — 50 P Q'oQ’

+(6Q;Q” 5+ 2Q;Q% )% + (3Q, Q05 — QQ°%2)A" + 64 (70)

These three equations along with Eqg. (69) may be used to solve dod the

A# and since these are first-order differential equations in the lambdas, we ex-
pect that there will be four arbitrary constants in our solutions for the Lagrange
multipliers. This completes the Dirac—Bergmann algorithm. For a summary see
Table I.

For tetrads that satisfy the field equations we may check to determine whether
the tetrad also agrees with the results of the Dirac—Bergmann algorithm. For tetrads
with C' = 0 orC' constant and lightlike these results are clearly consistent and the
region is Type |. Whel€' is nonconstant and the field equations are satisfied it is
not so obvious because all the tertiary constraints must be checked. For the example

Table I. Results of Constraint Algorithm

Case W=0 W#0
Primary constraints PL = 0 (12 first class) PL = 0 (12 second class)
Secondary constraints Py = K', with constant W QIQ¥+ P =0
K' lightlike (12 second class)
(4 first class) B
Tertiary constraints None QS Qﬁy‘; =0and

. A 1 ry
26; QPy Q% — 3Q5Q;
~Q%Qf ; +3Q5Q; =0
(4 second class)
Gauge fixing constraints 16 required Gauge fixed by constraint algorithm
Degrees of freedom 0 4




Unified Field Theory From Enlarged Transformation Group 1869

given in Eq. (51), one finds that the tertiary constraints are indeed satisfied and
the solutions for the Lagrange multipliers are= —%0 + % anda® = k¢S,
whereg = (x°)? — (x})? — (x?)? — (x3)?, and«® are four arbitrary constants.

Atpresentwe do nothave a physical interpretation of all the constraints. Recall
that Gauss's law shows up as one of the constraints in the free electromagnetic field
(Dirac, 1964). We expect that our secondary constraints will also have a similarly
important interpretations.

In the case of Type | regions Wiﬂﬁi) = 0 we see that the Hamiltonian is con-
sistent with what is expected in a theory that describes gravitation. Multiplication
of Eq. (62) byQ{* implies that%‘W Q% + Q¥P'o4 = 0. By comparison to Eq. (61)
we see thaH,, is weakly zero ifP) = —2C' is zero (Type I). Many investiga-
tors (e.g., Misner, 1957) expect that the correct Hamiltonian for gravity should be
weakly zero.

Of the two types of regions, it would seem that the Type | regions would be
more physically relevant. The 16 first class constraints would correspond to 16
gauge degrees of freedom. All the constraints are first class so that there is no need
for the Dirac bracket. The Type Il regions, however, have no gauge degrees of
freedom and the Dirac bracket would be needed to define the symplectic structure
on the 4-dimensional phase space.

4. CONCLUDING REMARKS
4.1. Possible Inclusion of the Strong Interaction

It may be possible to extend our theory to include the strong interaction, by
replacing the real orthonormal tetrj with a complex orthonormal tetrad),
which is restricted so that the space—time metric

Qv = G Z},Z} (71)

remaingeal. A bar indicates complex conjugation. Thatthere exist complex tetrads
which yield real metrics may be seen in the following way. It is known (see e.qg.,
Barut, 1980) that there exist two complex groups which preserve the canonical
Lorentz metric. One of these groups has complex transformation coeffitients
which satisfy the relatiommn = gijti,ta Wheregi; = gmn = diag(-1, 1, 1, 1).

This group does not conta®U(3) as a subgroup, and hence is of no interest here.
The other group has complex transformation coefficidijtsvhich satisfy the
relation

Omn = Gij T T (72)

where a bar indicates complex conjugation. This group cong&lii(8) as a proper

subgroup. The components of the complex tetl'gdz Triqh[‘j are complex valued
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functions of the real space—time coordinax&s The complex conjugate cif.L

is justz_}t = Tniqh/’j] becausehiu remains real. It is easily seen from Eq. (72) that
Eq. (73) yields the same (real) metric as Eq. (1), i, = 0ij h‘Mhi. Just as

the real tetrach), provides a richer structure thag),, (a structure which de-
scribes the gravitational and electroweak fields), the complex t&rgurovides

an even richer structure (a structure which offers the possibility for describing the
strong interaction, while still describing gravity with the real metric of general
relativity).

4.1.1. Currents for Strong Isospin and Hypercharge
Working by analogy with Eq. (40), we defirg by

¢ ==-2%22"), (73)

»V

whereZ is the determinant o, and note thag'! ¢; ¢}, is invariant not only under

real conservative coordinate transformations on Greek indices, but also under com-
plex conservative Lorentz transformations on Latin indices, i.e., transformations
Z™ = L{"Z! which satisfy

Li (L™ —L™) =0 (74)

andg; = Omin L™, LT wheregij = gmn = diag(-1, 1, 1, 1). For an infinitesimal
complex Latin Lorentz transformation, one easily finds thigt= 8!, + g €jm
whereejy, is anti-Hermitian. The conservative condition, Eq. (74), is satisfied if
and only ife' i — €'i,m = 0. From the<!. one can read off the generators for the
transformation coefficients};,.

Field equations may be derived from a variational principle with Lagrangian
¢ & ¢;. The reality constraint og,,,, is just

Gij (Z_L_Z‘J) - ZLZ_\J;) =0.
This constraint may be imposed by using Lagrange multipliers, and for the density
h, we haveh = ./—g = v Z Z. Thus, our variational principle is
5/ [g”a ¢+ A", (?Hzg - ZLZ_J)] VZZd'x =0 (75)

where ZL, Z_L and A*¥ are varied independently. (Independent variatiorzpf

andZ_L is equivalent to varying the real and imaginary componentszinde—
pendently.)
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After integration by parts, Noether’s theorem gives (conserved) currents cor-
responding to strong isosplg and hypercharg¥

I3 = Clz¢ — C'Z§ — C2z§ + C?Z5
- o - (76)
Y = C1z§ — C'Z¥ + C2z§ — C?Z5 — 2C3Z4 + 2C3Z3.

Itis clear that our discussion of the strong interaction is more speculative than the
discussions in previous sections. Much more work must be done before it may be
possible to make a more definite claim.

The results presented in this paper indicate that this theory may lead to the
fundamental theory that unifies all the known forces. The theory contains no ad-
justable parameters. The standard model, by contrast, requires that many parameter
values and symmetries must be “put in by hand.” The reason for this is that the
standard model does not unify the electroweak and the strong interactions. And,
of course gravity is not included in the standard model. In our theory, by contrast,
gravity is present from the outset, and all forces are completely unified. Indeed, our
theory is constructed by analogy with general relativity, whilelt{g) x SU(2)
electroweak theory and ti82J(3) strong theory (the building blocks of the standard
model) are constructed by analogy with electromagnetism.

4.2. Quantization of the Theory

The theory thus far is at the classical level. Before quantization via canonical
methods or path integrals, gauge constraints must be introduced to fix the gauge.
Type | regions would require 16 gauge constraints, while none are required for
Type Il regions. Alternatively one may introduce 16 fermionic ghost variables
and their conjugate momenta in Type | regions (Henneaux and Teitelboim, 1992;
Sundermeyer, 1982; Weinberg, 1996). These extra degrees of freedom act as neg-
ative degrees of freedom which have the effect of fixing the gauge.

The quantized theory must be examined to determine whether it is finite,
or, at least, renormalizable and free of anomalies. There are several reasons for
believing that the quantized theory will be either finite or renormalizable. First,
Rosenfeld (1930) noted certain advantages that tetrads present for the quantiza-
tion of gravity. Second, our Lagrangi@# C,, involves only first derivatives df ;
whereas the Ricci scal&, the Lagrangian for gravitation alone, involves first and
second derivatives af,,. Third, the conservation group is much larger than the
diffeomorphisms, and experience with gauge theory suggests that larger groups
offer more promise of successful quantization. Fourth, we recall that the theory of
weak interactions alone was not renormalizable, but the theory became renormal-
izable with the inclusion of electromagnetism. This provides hope that gravitation
will become renormalizable with the inclusion of the electroweak and/or strong
interaction.
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4.3. Fundamental Geometrical Issues

It is possible that certain geometric principles could lead to a determination
of coupling constants and masses. The larger symmetry of the conservation group
suggests that the basic geometry is not a space of points, but a space of paths.
Hence, we would investigate connections between this theory and string theory.
It appears possible that the path-space could provide a geometrical foundation
for string theory. The need for such a foundation has been emphasized especially
by Witten (1988), and Schwarz (1988) has noted that this foundation could be
provided by a “stringy space.”
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