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A theory has been presented previously in which the geometrical structure of a real
four-dimensional space time manifold is expressed by a real orthonormal tetrad, and the
group of diffeomorphisms is replaced by a larger group. The group enlargement was ac-
complished by including those transformations to anholonomic coordinates under which
conservation laws are covariant statements. Field equations have been obtained from
a variational principle which is invariant under the larger group. These field equations
imply the validity of the Einstein equations of general relativity with a stress-energy
tensor that is just what one expects for the electroweak field and associated currents.
In this paper, as a first step toward quantization, a consistent Hamiltonian for the the-
ory is obtained. Some concluding remarks are given concerning the need for further
development of the theory. These remarks include discussion of a possible method for
extending the theory to include the strong interaction.

KEY WORDS: gravitation; electroweak; strong; unification.

1. INTRODUCTION

In Sections 1 and 2, we describe a theory in which the classical (unquan-
tized) gravitational and electroweak fields appear as manifestations of geometrical
structure in a real four-dimensional space–time manifold. In Section 3, we ob-
tain the Hamiltonian for the theory as a first step toward quantizing the theory. In
Section 4, we make some concluding remarks concerning the further development
of the theory. One of these remarks suggests a method for extending the theory to
include the strong interaction. [Note: In several prior papers, one of us (Pandres,
1981, 1984a,b, 1995, 1998, 1999), has based the theory, not on a manifold, but on
a space in which paths, rather than points are the primary elements. In this paper,
however, we show that the theory can be based entirely on a manifold.]
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It is well known that any general relativistic metricgµν may be expressed in
terms of an orthonormal tetrad of vectorshi

µ. The expression is

gµν = gi j h
i
µh j

ν (1)

where gi j = gi j = diag(−1, 1, 1, 1), and the summation convention has been
adopted. Indices take the values 0,1,2,3, andgµν is defined bygµνgνα = δµα , where
δµα is the Kronecker delta. Latin (tetrad) indices are raised and lowered by usinggi j

andgi j , just as Greek (space time) indices are raised and lowered by usinggµν and
gµν . Partial differentiation is denoted by a comma. Covariant differentiation with
respect to the Christoffel symbol0αµν = 1

2gασ (gσµ,ν + gσν,µ − gµν,σ ) is denoted
by a semicolon.

1.1. Motivation

We recall (Pandres, 1962, 1999) an argument which is a generalization of the
“elevator” argument that led Einstein from special relativity to general relativity.
The special relativistic equation of motion for a free particle is

d2xi

ds2
= 0, (2)

where−ds2 = gi j dxi dxj . Consider the image-equation of this free-particle equa-
tion under the transformation

dxi = hi
µdxµ (3)

where the curlf i
µν = hi

ν,µ − hi
µ,ν is not zero. Equation (3) establishes a one-to-

one correspondence betweencoordinate increments dxi anddxµ. Sincehi
ν,µ −

hi
µ,ν is not zero, we cannot integrate Eq. (3) to get a one-to-one correspondence

between coordinatesxi andxµ. However, it follows from Eq. (3) thatdxi

ds = hi
µ

dxµ

ds .
Upon differentiating this with respect tos, using the chain rule, and multiplying
by hαi , we see that Eq. (2) may be written

d2xα

ds2
+ hαi hi

µ,ν
dxµ

ds

dxν

ds
= 0. (4)

We follow Eisenhart (1925) in defining Ricci rotation coefficients byγ i
µ,ν =

hi
µ;ν = hi

µ,ν − hi
σ0

σ
µν . Multiplication byhαi giveshαi hi

µ,ν = 0αµν + γ αµν , and
upon using this in Eq. (4) we have

d2xα

ds2
+ 0αµν dxµ

ds

dxν

ds
= −γ αµν

dxµ

ds

dxν

ds
. (5)

The relationγµνi = h j
µγ j ναhαi illustrates our general method for converting be-

tween Greek and Latin indices.
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Now, the affine connection for spin in general relativity is expressed in terms
of the Ricci rotation coefficients by0µ = 1

8γi j µ(γ i γ j − γ j γ i )+ aµ I , where the
γ i are the Dirac matrices of special relativity,I is the identity matrix, andaµ is
an arbitrary vector. It is well known that the spin connection contains complete
information about the electromagnetic field, and that one half of Maxwell’s equa-
tions are identically satisfied on account of the existence of the spin connection.
Furthermore, the manner in which the electromagnetic field enters the spin con-
nection is in agreement with the principle of minimal electromagnetic coupling.
An understanding of the spinor calculus in Riemann space, and the role played by
the spin connection, was gained through the work of many investigators during the
decade after Dirac’s discovery of the relativistic theory of the electron; see e.g.,
Bade and Jehle (1953) for a general review. Many of these investigators recog-
nized the description of the electromagnetic field as part of the spin connection. An
especially lucid discussion of this has been given by Loos (1963). The subsequent
unification of the electromagnetic and weak fields by Weinberg (1967), and Salam
(1968) causes us to expect that the spin connection might also contain a description
of the weak field.

We now recall (Pandres, 1995) calculations that suggest that the electroweak
field is described byMµνi , the “mixed symmetry” part ofγµνi under the permutation
group on three symbols. One may object to usingγµνi to describe the electoweak
field sinceγi j µ is used in the spin connection. However, these geometric objects
cannot be considered to be the same since the method of converting from one
to the other is not just a diffeomorphism but involveshi

µ. Thus the components
of γµνi are independent of the components ofγi j µ, although if one is zero the
other is also zero. The totally symmetric part ofγµνi vanishes becauseγµνi is
antisymmetric inµ andν. Thus, we haveγµνi = Mµνi + Aµνi , whereAµνi is the
totally antisymmetric part. Clearly,Aαµν makes no contribution to the right side
of Eq. (5), so

d2xα

ds2
+ 0αµν dxµ

ds

dxν

ds
= dxµ

ds
Mα

µ i v
i , (6)

wherevi = dxi

ds is the (constant) first integral of Eq. (2). The totally antisymmetric
part ofγµνi is

Aµνi = 1

3
(γµνi + γiµν + γνiµ). (7)

Thus, the mixed symmetry part isMµνi = γµνi − Aµνi , so, we have

Mµνi = 1

3
(2γµνi − γiµν − γνiµ). (8)

Define fiµν := hi ν,µ − hiµ,ν = hi ν;µ − hiµ;ν , so thatfiµν = γi νµ − γiµν . The
antisymmetry ofγµνi in its first two indices may be used to obtain an expression
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for Mµνi in terms of fiµν . If we subtract from this the corresponding expressions
for fµνi and fνiµ, we see thatγµνi = 1

2( fiµν − fµνi − fνiµ). By using this and the
corresponding expressions forγiµν , andγνiµ in Eq. (8), we obtain

Mµνi = 1

3
(2 fiµν − fµνi − fνiµ), (9)

which may be written

Mµνi = 1

3

(
2δn

i δ
α
µδ

σ
ν − hn

µδ
α
ν hσi − hn

νh
α
i δ
σ
µ

)
fnασ , (10)

whereδαµ is the Kronecker delta. It is important to notice that Eq. (10) may be
rewritten into the form

Mµνi = 1

3

(
2δn

i δ
α
µδ

σ
ν − hn

µδ
α
ν hσi − hn

νh
α
i δ
σ
µ

)
Fnασ , (11)

where

Fiµν = fiµν + e0i jk h j
µhk

ν , (12)

andeni jk is the Levi–Civita symbol. In rewriting Eq. (10) as Eq. (11), we have used
the easily verifiable fact that(

2δn
i δ
α
µδ

σ
ν − hn

µδ
α
ν hσi − hn

νh
α
i δ
σ
µ

)
e0njkh j

αhk
σ = 0.

Now, Fiµν is the usual field strength (see e.g., Nakahara, 1990) for aU (1)×
SU(2) gauge field,provided that hiµ is transformed on its tetrad indices as a gauge
potential, rather than as a Lorentz vector. We wish to make it clear that we will not
require thathi

µ be transformed as a gauge potential. In our view, the need for such a
transformation rule arises from the fact that coordinate transformations are limited
to the diffeomorphisms. In Section 2, we enlarge the group of diffeomorphisms to
the conservation group. The mass-changing effect of a nondiffeomorphic conser-
vative transformation is similar to what one would get ifhi

µ were to be transformed
as a gauge potential. It is eminently reasonable that when a particle is subjected to
a rotation in isospace the gravitational field may change.

From Eq. (11), we see that in the expression, Eq. (10), forMµνi , the curl
fnαγ may simply be replaced by the gauge fieldFnαγ . TheFnαγ may be viewed
as a field with “bare” or massless quanta, which are “clothed” by the factor
1
3(2δn

i δ
α
µδ

σ
ν − hn

µδ
α
ν hσi − hn

νh
α
i δ
σ
µ), and thus may acquire mass. The analysis in

Section 2.4 suggests thatMµνi may describe the physical electroweak field as
it appears in the appropriate way in our Lagrangian, and in the stress-energy
tensor of the Einstein equations. For this identification to be valid, the quantity
Mµν0 = 1

3(2 f0µν − fµν0− fν0µ) must describe the electromagnetic field; hence,
it must be the curl of a vector. The presence of the terms− fµν0− fν0µ may cause
one to ask howMµνi can be identified as the electroweak field.
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Our answer is this: The orthodox physical interpretation, which we adopt, is
thathi

µ describes an observer-frame. Now, ifhi
µ describes a freely falling, nonrotat-

ing observer frame, our expression for Mµν0 reduces to Mµν0 = 1
3 f0µν . This may

be seen as follows. The condition for a freely falling, nonrotating frame (Synge,
1960) ishi ν;αhα0 = 0. In terms of the Ricci rotation coefficients, the condition is
γµν0 = 0. From this and Eq. (8), we see that for anhi

µ which describes a freely
falling, nonrotating observer frame,Mµν0 = 1

3(γ0νµ − γ0µν) = 1
3(h0ν;µ − h0µ;ν) =

1
3(h0ν,µ − h0µ,ν) = 1

3 f0µν . Moreover, in the nonrelativistic limit (i.e., forv1, v2, v2

small compared to one), the electromagnetic termdxµ

ds M α
µ 0v0 dominates the right

side of Eq. (6).

2. GRAVITATIONAL AND ELECTROWEAK UNIFICATION

It is clear that no meaningful physics can be done without an observer. Thus the
principle of parsimony (Occam’s razor) suggests that we consider a theory in which
the observer-framehi

µ is the only fundamental field; i.e., in which geometrical
structure is expressed byhi

µ, rather than bygµν . For this purpose we need an
invariant Lagrangian constructed fromhi

µ and its derivatives, to be used in a
variational principle (analogous to the Hilbert variational principle for gravitation,
but with hi

µ varied rather thangµν).

2.1. Weitzenböck Invariants

Soon after Einstein (1928a,b) introduced tetrads into physics, Weitzenb¨ock
(1928) considered quantities constructed fromhi

µ and its derivatives which are
invariant under the diffeomorphisms (the coordinate transformations of general
relativity). Weitzenb¨ock listed the invariants

A = 1

4
f iµν fνµi B = 1

4
f iµν fiµν 8 = 1

4
CνCν 9 = 1

2
(Cν

,ν + Cµhνi hi
µ,ν)

where the vectorCν is defined by

Cν = hµi f i
µν. (13)

As Weitzenb¨ock noted, the most general Lagrangian which yields second-order
field equations that are linear in the second derivatives ofhi

µ is L = a A+ bB+
φ8+ ψ9, where the coefficientsa, b, φ, ψ are constants.

In order to optimize clarity in our discussion, we shall use an equivalent list
of invariants

W1 = f iµν fνµi W2 = f iµν fiµν W3 = CνCν W4 = Cν
;ν . (14)
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That our list is equivalent to Weitzenb¨ock’s is clear, becauseW1 = 4A, W2 =
4B, W3 = 48, and W4 = Cν

,ν + Cµ0νµν = (Cν
,ν + Cµhνi hi

µ,ν)− Cµ(hνi hi
µ,ν−

0νµν) = 29 − Cµ(hνi hi hi
µ,ν − 0νµν). We see from the definition of0αµν and

Eq. (1) that0νµν = 1
2gσνgσν,µ = hνi hi

ν,µ. Thus, we haveW4 = 29 − Cµhνi
(hi

µ,ν − hi
ν,µ) = 29 − Cµhνi f i

νµ = 29 − CµCµ = 29 − 48.
Clearly, we may write the Lagrangian as

L = k1W1+ k2W2+ k3W3+ k4W4 (15)

where the coefficientsk1, k2, k3, k4, are constants.
Weitzenböck recognized that if the fields to be varied are just the compo-

nents ofgµν , then there is essentially no freedom of choice for the coefficients.
He showed that except for a common multiplicative constant, one must choose
a = −2, b = −1,φ = −4,ψ = 4; i.e.,k1 = − 1

2, k2 = − 1
4, k3 = 1, k4 = 2. With

this choice,L is just the Ricci scalarR, which is the Lagrangian for the free gravita-
tional field. However, since the fields to be varied in our theory are the components
of hi

µ, there exists a nondenumerable infinity of inequivalent Lagrangians corre-
sponding to different ratios of the constantsk1, k2, k3, k4. Thus, we are confronted
with a dilemma that was anticipated by Einstein (1949). He noted that with the
introduction of a richer structure (such as our tetrad), the diffeomorphism group
“will no longer determine the equations as strongly as in the case of the symmetric
tensor as structure.” Einstein also suggested the solution for this dilemma: “There-
fore it would be most beautiful, if one were to succeed in expanding the group once
more, analogous to the step which led from special relativity to general relativity.”
Einstein’s suggestion was in accord with the prophetic statement by Dirac (1930)
that “The growth of the use of transformation theory, as applied first to relativity
and later to the quantum theory is the essence of the new method in theoretical
physics. Further progress lies in the direction of making our equations invariant
under wider and still wider transformations.” Dirac went on to remark “This state
of affairs is very satisfactory from a philosophical point of view, as implying an
increasing recognition of the part played by the observer in himself introducing
the regularities that appear in his observations.. . .” Dirac’s remark supports our
use of the observer-framehi

µ as the only fundamental field.
In Section 2.3, we shall see thatk1W1+ k2W2 is not invariant under a group

larger than the diffeomorphisms for any choice of the constantsk1 and k2. By
contrast,k3W3+ k4W4 is invariant under a group larger than the diffeomorphisms
for arbitrary choice ofk3 andk4. But, W4 = Cν

;ν is a covariant divergence; so, the
termk4W4 would make no contribution to field equations. Hence, we shall choose
for our Lagrangian the invariantW3 = CνCν . We shall see that this Lagrangian is
just the sum of the gravitational LagrangianRand terms which we tentatively label
as the electroweak LagrangianE. The termsRandE are each invariant only under
the diffeomorphisms; it is their sum that is invariant under the larger group. By
using Eq. (12), we also note thatCν may be rewritten into the formCν = hiuFiµν .
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Thus, in the expression forCµ, just as in the expression forMµνi , the curl fiµν
may simply be replaced by the gauge fieldFiµν .

2.2. Holonomic and Anholonomic Coordinates

It is possible to establish a one-to-one correspondence between pointsx of the
manifold and coordinatesxα (at least in finite coordinate patches). Such coordinates
are called (Schouten, 1954)holonomiccoordinates. Let transformation coefficients
Xα̃
µ have a nonzero determinant, and let the components ofXα̃

µ have definite values
at each point x. Then, these components are one-valued functions of holonomic
coordinates, i.e.,Xα̃

µ = Xα̃
µ(xσ ). The relation

dxα̃ = Xα̃
µ(xσ ) dxµ (16)

establishes a one-to-one correspondence between coordinate incrementsdxα and
dxα̃. The inverse relation to Eq. (16) is

dxµ = Xµ
α̃ (xσ ) dxα̃ (17)

where Xµ
α (xσ ) is defined byXµ

α̃ Xα̃
ν = δµν . Eq. (16) may be integrated to give a

one-to-one correspondence between coordinatesxµ andxα̃ if and only if

Xα̃
ν,µ − Xα̃

µ,ν = 0. (18)

Thus, if Eq. (18) is satisfied, thexα̃ are also holonomic coordinates. If Eq. (18) is
notsatisfied, then thexα̃ are called (Schouten, 1954)anholonomic coordinates.

There does not exist a one-to-one correspondence between pointsx of the
manifold and anholonomic coordinates. Thus, in an equation such as Eq. (17), the
holonomic coordinatesxσ cannot be eliminated in favor of anholonomic coordi-
natesxα̃. A transformation to anholonomic coordinates must be accompanied by
what Schouten calls a “mitschleppen,” i.e., a “dragging along” of the holonomic
coordinates. (In this sense, holonomic and anholonomic coordinates are not on
the same footing. They can be put on the same footing through the introduction
of a path space, as we have done in several prior papers. In this paper, however,
our setting is a manifold.) We can enlarge the covariance group so that it includes
transformations to anholonomic coordinates, because our group elements are the
transformation coefficients (which have definite values at each pointx).

We shall need partial derivatives with respect to anholonomic as well as
holonomic coordinates. LetF be a function with a definite value at each pointx.
If xα andxα̃ are both holonomic, the relation betweenF,α andF,α̃ is

F,α̃ = F,µXµ
α̃ . (19)

Thus, regardless whetherxα̃ is holonomic or anholonomic, we may take Eq. (19)
as thedefinitionof F,α̃ (wherexα remains holonomic). Let the coordinatesxα̂ also
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be either holonomic or anholonomic. Then, of course,F,α̂ = F,µXµ

α̂ , and we easily
find thatF,α̂ = F,µ̃Xµ̃

α̂, whereXµ̃
α̂ = Xµ̃

σ Xσ
α̂ .

2.3. The Conservation Group

The transformation law for a tetrad of vectors is

hi
µ = hi

α̃Xα̃
µ. (20)

Upon differentiating Eq. (20) with respect toxν , we have

hi
µ,ν = hi

α̃,νXα̃
µ + hi

α̃Xα̃
µ,ν = hi

α̃,σ̃ Xσ̃
ν Xα̃

µ + hi
α̃Xα̃

µ,ν

If we subtract this from the corresponding expression withµ andν interchanged,
we obtain

f i
µν = f i

α̂σ̂ Xα̃
µXσ̃

ν + hi
α̃

(
Xα̃

ν,µ − Xα̃
µ,ν
)

(21)

where f i
α̂σ̂ = hi

σ̃ ,α̃ − hi
α̃,σ̃ . We see from Eq. (21) thatf i

µν transforms as a
tensor if and only if Eq. (18) is satisfied, i.e., if and only if the transformation is a
diffeomorphism. We also see from Eqs. (14) and (21) that no linear combination
of W1 and W2 with constant coefficients is invariant under a larger group than
the diffeomorphisms. By contrast, if we multiply Eq. (21) byhµi = hρ̃i Xµ

ρ̃ and use
Eq. (13), we get

Cν = Cα̃Xα̃
ν + Xµ

α̃

(
Xα̃

ν,µ − Xα̃
µ,ν
)
. (22)

We see from Eq. (22) thatCν transforms as a vector if and only if

Xν
α̃

(
Xα̃

ν,µ − Xα̃
µ,ν
) = 0. (23)

Accordingly, we recall (Pandres, 1981) thatCνCν is invariant under transforma-
tions that satisfy Eq. (23).

2.3.1. Conservative Coordinate Transformations

In the discussion that led to Eq. (23),xα was required to be holonomic.
We now relax that requirement and allowxα and/orxα̃ to be either holonomic or
anholonomic. A transformation which satisfies Eq. (23) is calledconservative. This
terminology is appropriate for the following reason: A relativistic conservation law
is an expression of the formVα

,α = 0, whereVα is a vector density of weight+1.
This is a covariant statement under a coordinate transformation relatingxα andxα̃

if and only if it implies and is implied by the relationV α̃
,α̃ = 0. The transformation

law for a vector density of weight+1 isV α̃ = ∂x
∂ x̃ Xα̃

µVµ, where∂x
∂ x̃ is the (nonzero)

Jacobian determinant ofXµ
α̃ . Upon differentiatingV α̃ with respect toxα̃, we obtain
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V α̃
,α̃ =

(
∂x
∂ x̃ Xα̃

µ

)
,α̂Vµ + ∂x

∂ x̃ Vα
,α. For arbitraryVµ, we see that a conservation law is a

covariant statement if and only if(
∂x

∂ x̃
Xα̃
µ

)
,α̃ = 0. (24)

For this reason, we call a coordinate transformation conservative if it satisfies
Eq. (24). Now,(

∂x

∂ x̃
Xα̃
µ

)
,α̃ =

(
∂x

∂ x̃

)
,α̃ Xα̃

µ +
∂x

∂ x̃
Xα̃

µ,α̃ =
(
∂x

∂ x̃

)
,µ+∂x

∂ x̃
Xα̃

µ,νXν
α̃

so, if we use the well-known formula(
∂x

∂ x̃

)
,µ= ∂x

∂ x̃
Xα̃
ν Xν

,α̃,µ

for the derivative of a determinant, and note thatXα̃
ν Xν

α̃,µ = −Xα̃
ν,µXν

α̃, we find
that Eq. (24) is equivalent to Eq. (23).

2.3.2. The Conservation Group

We now recall (Pandres, 1981) an explicit proof that the conservative co-
ordinate transformations form a group. [D. Finkelstein (private communication,
1981), however, has pointed out that the group property follows implicitly from the
derivation given above.] First, we note that the identity transformationxα̃ = xα is a
conservative coordinate transformation. Next, we consider the result of following
a coordinate transformation fromxα to xα̃ by a coordinate transformation fromxα̃

to xα̂. Upon differentiating

Xα̂
µ = Xα̂

ρ̃ Xρ̃
µ (25)

with respect toxν , subtracting the corresponding expression withµ andν inter-
changed, and multiplying byXν

α̂ we obtain

Xν
α̂

(
Xα̂

ν,µ − Xα̂
µ,ν
) = Xρ̃

µXσ̃
α̂

(
Xα̂

σ̃ ,ρ̃ − Xα̂
ρ̃,σ̃
)+ Xν

ρ̃

(
Xρ̂

ν,µ − Xρ̂
µ,ν
)
. (26)

We see from Eq. (26) that ifXν
ρ̃(Xρ̂

ν,µ − Xρ̂
µ,ν) andXσ̃

α̂ (Xα̂
σ̃ ,ρ̃ − Xα̂

ρ̃,σ̃ ) vanish,
then Xν

α̂(Xα̂
ν,µ − Xα̂

µ,ν) vanishes. This shows that if the transformations from
xα to xα̃ and fromxα̃ to xα̂ are conservative coordinate transformations, then the
product transformation fromxα to xα̂ is a conservative coordinate transformation.
If we letxα̂ = xα, we see from Eq. (26) that the inverse of a conservative coordinate
transformation is a conservative coordinate transformation. From Eq. (25), we see
that the product of matricesXρ̃

µ andXα̂
ρ̃ (which represent the transformations from

xα to xα̃ and fromxα̃ to xα̂, respectively) equals the matrixXα̂
µ (which represents

the product transformation fromxα to xα̂). It is obvious, and well known, that if
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products admit a matrix representation in this sense, then the associative law is
satisfied. This completes the proof that the conservative coordinate transformations
form a group, which we call the conservation group.

To show that the conservation group contains the diffeomorphisms as a proper
subgroup, we need only exhibit transformation coefficients which satisfy Eq. (23),
but do not satisfy Eq. (18). Let

Xα̃
µ = δα̃ν + δα̃0δ2

νx
1. (27)

Upon differentiating Eq. (27) with respect toxµ and subtracting the corresponding
expression withµ andν interchanged, we obtain

Xα̃
ν,µ − Xα̃

µ,ν = δα0
(
δ1
µδ

2
ν − δ1

νδ
2
µ

)
. (28)

A nonzero component of Eq. (28) isX0̃
2,1− X0̃

1,2= 1, which shows that Eq. (18)
is not satisfied. It is easily verified that

Xν
α̃ = δνα̃ − δν0δ2

α̃x1 (29)

satisfies our conditionXµ
α̃ Xα̃

ν = δµν . If we multiply Eq. (28) by Eq. (29), we see
that Eq. (23) is satisfied.

2.4. The Lagrangian

We now recall (Pandres, 1999) evidence that the invariantW3 = CνCν is an
appropriate Lagrangian for gravitational and electroweak unification.

The Riemann tensor is defined as usual byRαβµν = hαi (hi
β;µ;ν − hi

β;ν;µ)
while the Ricci tensorRµν and Ricci scalarR are defined, as usual, byRµν =
Rαµαν and R= Rαα. By using hαi hi

β;µ;ν = (hαi hi
β;µ);ν − hα i ;νhi

β;µ = γ αβµ;ν +
γ ασνγ

σ
βµ, we easily find that

Rαβµν = γ α βµ;ν − γ αβν;µ + γ ασνγ σ βµ − γ ασµγ σ βν. (30)

From Eq. (13), we see thatCµ = hνi (hi
µ,ν − hi

ν,µ) = hνi (hi
µ;ν − hi

ν;µ) = γ νµν −
γ ννµ = γ νµν . By usingCµ = γ νµν , we find from Eq. (30) that

Rµν = Cµ;ν − Cαγ
α
µν − γ αµν;α + γ ασνγ σ µα, (31)

and, from Eq. (31)

CµCµ = R+ γ µi νγµνi − 2Cµ
;µ. (32)

The first term on the right side of Eq. (32) is the Ricci scalar, which is the Lagrangian
for gravitation. The last term is a covariant divergence, which contributes nothing
to the field equations. We now consider the interpretation of the termγ µi νγµνi .
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From Eqs. (7) and (8), we see that

Aµνi Mµνi = 0, (33)

and that

Mµνi + Miµν + Mνiµ = 0. (34)

From γµνi = Mµνi + Aµνi , and Eq. (33), we getγ µi νγµνi = Mµi νMµνi −
Aµνi Aµνi . But, Mµi νMµνi = 1

2 Mµi νMµνi + 1
2 MνiµMνµi = 1

2 Mµi νMµνi +
1
2 Mi νµMµνi = 1

2

(
Mµi ν + Mi νµ

)
Mµνi = 1

2 Mµνi Mµνi , where we have used
Eq. (34). Thus, we haveγ µi νγµνi = 1

2 Mµνi Mµνi − AµναAµνα. We now define
a vector

Aµ = 1

3!
(−g)−1/2 eµαβσ Aαβσ , (35)

and find that

AµναAµνα = −6AµAµ. (36)

In obtaining Eq. (36), we have used the well known identity (see e.g., Weber,
1961) for expressing the product of two Levi–Civita symbols as a determinant of
Kronecker deltas. We now see that Eq. (32) may be written

CµCµ = R+ 1

2
Mµνi Mµνi + 6AµAµ − 2Cµ

;µ. (37)

The termMµνi Mµνi is in the form of the usual electroweak Lagrangian, and the
AµAµ term has precisely the form that is needed (see e.g., Moriyasu, 1983) for
the introduction of mass.

2.5. Field Equations

We have previously (Pandres, 1981) considered the variational principle

δ

∫
CµCµ

√−g d4x = 0

wherehi
µ is varied. We note that

√−g equalsh, the determinant ofhi
µ; and that

CµCµ = Ci Ci . Hence, our variational principle may be written

δ

∫
Ci Ci h d4x = 0. (38)

The variational calculation (Pandres, 1984a) usingCi Ci is less tedious than that
usingCµCµ. We find from Eq. (38) that∫

h
(
2Ci δCi − Ci Ci h

k
νδh

ν
k

)
d4x = 0, (39)
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where we have usedδh = hhνkδh
k
ν = −hhk

νδh
ν
k. We note that(

hhνi
)

,ν = h,νh
ν
i + hhνi ,ν

= h
(
hµk hk

µ,νh
ν
i + hνk,νh

k
µhµi

)
= h

(
hνkhk

ν,µhµi − hνkhk
µ,νh

µ

i

)
= −hCµhµi = −hCi

Thus, we see that

Ci = −h−1
(
hhνi

)
,ν . (40)

Variation of Eq. (40) givesδCi = h−2(hhνi ),νδh− h−1δ(hhνi ),ν = Ci hk
νδh

ν
k −

h−1
[
δ(hhνi )

]
,ν . Upon using this expression forδCi in Eq. (39), we obtain∫

hCkCkhi
νδh

ν
i d4x − 2

∫
Ci
[
δ
(
hhνi

)]
,ν d4x = 0, (41)

and, integration by parts gives∫
h

(
Ci

,ν − hi
νC

k
,k +

1

2
hi
νC

kCk

)
δhνi d4x −

∫ [
Ci δ

(
hhνi

)]
,ν d4x = 0. (42)

By using Gauss’s theorem, we may write the second integral of Eq. (42) as an
integral over the boundary of the region of integration. We discard this boundary
integral by demanding thatCi δ(hhνi ) shall vanish on the boundary, and demand
thatδhνi be arbitrary in the interior of the (arbitrary) region of integration. Thus,
we get field equationsCi

,ν − hi
νC

k
,k + 1

2hi
νC

kCk = 0, and, upon multiplying byhνj ,
we write these field equations as

Ci
, j − δi

j C
k
,k +

1

2
δi j CkCk = 0. (43)

We note thatCα
;σ = (Ckhαk );σ = Ck

,σhαk + Ckhαk;σ = Ck
,σhαk + Ckγ αk σ . Thus, we

haveCk
,σhαk = Cα

;σ + Cργ αρσ . If we multiply by hi
αhσj , we getCi

, j = hi
αhσj (Cα

;σ +
Cργ αρσ ), andCk

,k = Cα
;α + CαCα. If we use these expressions forCi

, j andCk
,k in

Eq. (43), we obtain the relationhi
αhσj (Cα

;σ + Cργ αρσ )− δi
j C

α
;α − 1

2δ
i
j C

αCα = 0,
and, upon multiplying this byhiµh j

ν , we rewrite our field equations as

Cµ;ν − Cαγ
α
µν − gµνC

α
;α −

1

2
gµνC

αCα = 0. (44)

2.5.1. The Field Equations as Einstein Equations

The Einstein equations of general relativity may be interpreted in two ways.
One interpretation is as differential equations for the metric, when the stress-energy
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tensor is given. Alternatively, these equations may be looked upon as a definition of
the stress-energy tensor in terms of the metric. The second interpretation has been
stressed particularly by Schr¨odinger (1960) [“I would rather you did not regard
these equations as field equations, but as a definition ofTik the matter tensor.”] and
by Eddington (1924) [“and we must proceed by inquiring first what experimental
properties the physical tensor possesses, and then seeking a geometrical tensor
which possesses these properties”]. It is the second interpretation that we adopt.

From Eqs. (31) and (32), we find that an identity for the Einstein tensor
Gµν = Rµν − 1

2gµνR is

Gµν = Cµ;ν − Cαγ
α
µν − gµνC

α
;α −

1

2
gµνC

αCα + γ α
µ ν;α

+ γ ασνγ σ µ;α +
1

2
gµνγ

αiσ γασ i . (45)

Equation (44) just states that the first line on the right side of Eq. (45) vanishes.
Thus, we may write our field equations as

Gµν = γ α
µν;α + γ ασνγ σµα +

1

2
gµνγ

αiσ γασ i . (46)

By using the well known symmetry of the Einstein tensor, i.e.,Gµν = Gνµ. we
see from Eq. (46) that the symmetric part of our field equations is

Gµν = 1

2

(
γ α
µ ν + γ α

ν µ

)
;α
+ 1

2

(
γ ασµγ

σ
να + γ ασµγ σ να

)+ 1

2
gµνγ

αiσ γασ i . (47)

Sinceγ αµν = M α
µ ν + A α

µ ν , we see that (γ α
µ ν + γ α

ν µ);α = (Mα
µ ν + M α

ν µ);α =
(M α

µ i h
i
ν + M α

ν i h
i
µ);α = Jµi hi

ν + Jνi hi
µ+M α

µσ γ
σ ν α+M α

ν σ γ
σ
µα, whereJµi =

Mα
µi ;α is a (conserved) electroweak current. From Eq. (33), the repeated use of

Eq. (34), the total antisymmetry ofAµνα, and the antisymmetries ofγµνα andMµνα

in their first two indices, we find after a tedious but straightforward calculation
that Eq. (47) may be written

Gµν = Ai j
µAi j ν − 1

2
gµνAi j αAi j α + 1

2

(
Jµi h

i
ν + Jνi h

i
µ

)− Mµν , (48)

where Mµν = Mα
µi M

i
αν − 1

4gµνMασ i Mασ i . The terms in Eq. (48) that involve
Ai j µ may be written in a more simple form. From Eq. (35), we haveAµ =
1
3! (−g)−1/2

gµρ eραβσ Aαβσ , and we find after a little work thatAµ = − 1
3! (−g)1/2 eµαβσ Aαβσ .

Thus,AµAν = − 1
36gµρ eραβσ eνθλτ Aθλτ Aaβσ . By expressing the product of Levi–

Civita symbols as a determinant of Kronecker deltas, we getAµAν = 1
2 Ai j

µAi j ν −
1
6gµνAi j αAi j α. From this and Eq. (36), we see that Eq. (48) may be written

Gµν = 2AµAν + gµνAαAα + 1

2

(
Jµi h

i
ν + Jνi h

i
µ

)− Mµν. (49)
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The right side of Eq. (49) is just what one would expect for the stress-energy tensor
of the electroweak field, its associated currents, and gauge symmetry breaking
terms corresponding to those in the Lagrangian, Eq. (37).

2.6. Solutions of the Field Equations

2.6.1. Solutions With Ci = 0

It is clear that our field equations, Eq. (43) are satisfied ifCi = 0. Consider the
tetradhi

µ = δi
µ + δi

0δ
2
µx1, wherex1 is a Greek (space–time) coordinate. We have

shown (Pandres, 1981) that this tetrad yieldsCi = 0, gives a Ricci scalarR= 1
2,

and gives a metricgµν which satisfies the well known (Synge, 1960) Einstein
equations for a charged dust cloud.

2.6.2. Solutions With Ci Constant and Lightlike

It is also clear that our field equations are satisfied ifCi is constant and
lightlike. Consider the tetrad

hi
µ = δi

µ +
(
δi

0+ δi
1

)
δ0
µ

(
ex1 − 1

)
(50)

where the coordinatex1 is Greek. We have shown (Pandres, 1984a) that this tetrad
yields a nonvanishing but constant and lightlikeCi .

2.6.3. Solutions With Ci which Does Not Vanish, and Is
Neither Constant Nor Lightlike

It is clear from Sections 2.6.1 and 2.6.2 above that a tetrad satisfies our field
equations if it satisfies the condition of either vanishing or being constant and
lightlike. In a previous paper (Pandres, 1984a), we made the false assertion that
a tetrad satisfies our field equationsonly if it satisfies this condition. The false
assertion was based on the following argument: It is clear that for distinct values
of i and j , the field equations state thatCi

, j = 0. This fact led us to assume that
the componentCi can depend only on the single coordinatexi ; i.e., thatC0

,0 can
depend only onx0; C1

,1 only on x1, etc. This assumption would be true if the
Latin coordinates were holonomic, but is false, because they are anholonomic. An
example of a tetrad which satisfies our field equations, but yields aCi which is
neither constant nor lightlike has been found by one of us (Green). His tetrad is

hµi =
[(

x0
)2− (x1

)2+ (x2
)2− (x3

)]
δ
µ

i . (51)

In Eq. (51), the coordinatesx0, x1, x2, x3 are Greek. The tetrad in Eq. (51) satisfies
our field equations, but yieldsCi = (−6x0,−6x1,−6x2,−6x3) which is neither
constant nor lightlike.
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2.6.4. Solutions That Yield Flat Riemann Space–Times

We note that our field equations admit nontrivial solutions for whichgµν is the
metric of a flat space–time. One of us (Green, 1991, reported in Pandres (1995))
has exhibited the tetrad

hµi = δµ0 δ0
i + δµ3 δ3

i +
(
δ
µ

1 δ
1
i + δµ2 δ2

i

)
cosx3+ (δµ2 δ1

i − δµ1 δ2
i

)
sinx3, (52)

where the coordinatex3 is Greek. For thishµi , the quantityMµνi does not vanish,
but Ci = 0, andgµν = diag(−1, 1, 1, 1). He has also exhibited (Green, 1997,
reported in Pandres (1999)) the tetrad

hµi =
1

2

[(
δ
µ

0 δ
0
i + δµ1 δ1

i

) (
F + 1

F

)
+ (δµ0 δ1

i + δµ1 δ0
i

) (
F − 1

F

)]
+ δµ2 δ2

i + δµ3 δ3
i

(53)

whereF = x0+ x1, and the coordinatesx0 and x1 are Greek. For thishµi , the
quantityMµνi does not vanish, butCi is constant and lightlike, andgµν = diag(−1,
1, 1, 1).

3. THE HAMILTONIAN

In this section the Hamiltonian for this theory will be derived. As the dy-
namics is constrained, the Dirac–Bergmann procedure will be used to find all the
constraints and to produce a consistent Hamiltonian.

3.1. The Primary Hamiltonian

Let h be the determinant ofhi
µ as before. The 16 canonical position variables

are defined by

Qα
i ≡ hhαi . (54)

Let Qi
α be the matrix inverse ofQα

i , so thatQα
i Qi

β = δαβ andQi
αQα

j = δi
j . Let Q

be the determinant ofQα
i . ThenQ = det(Qα

i ) = det(hhαi ) = h4h−1 = h3, and so,
h = Q

1
3 . Using Eq. (40) we have

Ci = −Q−
1
3 Qν

i ,ν , (55)

and therefore the Lagrangian density may be expressed by

L = gi j Qµ
i ,µQµ

j ,νQ−
1
3 . (56)

The momenta are defined as usual byPi
µ = δL

δQµ

i ,0
whereQµ

i ,0 is the derivative
of Qµ

i with respect to the Greekx0 variable. We assume that thex0 variable has
a time-like direction at each point in space–time. We also assume that the values
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of Qα
i andPi

µ as well as their derivatives on a space-like surfaceσ determine the
dynamics. From Eq. (56) we have

Pi
µ = 2gi j Qν

j ,νδ
0
µQ−

1
3 . (57)

For the remainder of this section we will use a bar over an index to indicate a
restriction of the index range to the values 1, 2, and 3. Thus there are 12 primary
constraints

Pi
µ̄ = 0 µ̄ = 1, 2, 3. (58)

The four nonzero momenta are seen to be a multiple of the Latin components of
the curvature vector:

Pi
0 = 2gi j Qν

j ,νQ−
1
3 = −2gi j Cj = −2Ci . (59)

The Hamiltonian densityH is defined byH = Pi
µQµ

i ,0− L. Using the constraints
and Eq. (59), we have

H = Pi
0 Q0

i ,0− 1

4
gi j Pi

0 P j
0 Q

1
3 .

But using Eq. (55),Q0
i ,0 = Qµ

i ,µ − Qµ̄
i ,µ = −Q

1
3 Ci − Qµ̄

i ,µ̄, = 1
2 Q

1
3 gi j P j

0 −
Qµ̄

iµ and therefore

H = 1

2
gi j Pi

0 P j
0 Q

1
3 − Pi

0 Qµ̄
i ,µ̄ − 1

4
gi j Pi

0 P j
0 Q

1
3

= 1

4
gi j Pi

0 P j
0 Q

1
3 − Pi

0 Qµ̄
i ,µ̄.

Hence we have the following primary Hamiltonian density

Hp = 1

4
gi j Pi

0 P j
0 Q

1
3 − Pi

0 Qµ̄
i ,µ̄ + vµ̄i Pi

µ̄ (60)

with Lagrange multipliersvµ̄i . In cases whereCi is zero on the boundary ofσ , a
partial integration yields the following primary Hamiltonian density:

Hp = 1

4
gi j Pi

0 P j
0 Q

1
3 + Qµ̄

i Pi
0,µ̄ + vµ̄i Pi

µ̄. (61)

The full Hamiltonian isHp =
∫
σ

Hp d3x.

3.2. The Dirac–Bergmann Procedure and the Consistent Hamiltonian

When the dynamics are constrained, consistency requires that the time deriva-
tive of a constraint must be zero. We follow the Dirac–Bergmann algorithm
(Bergmann and Goldberg, 1955; Dirac, 1964; Sundermeyer, 1982; Weinberg,
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1995) for constrained dynamics. The Hamiltonian equations of motion state that
for any functionX of Qµ

i andPi
µ we have

d X

dt
= {X, Hp} = δX

δQµ

i

δHp

δPi
µ

− δX

δPi
µ

δHp

δQµ

i

.

Dirac refers to the constraint equations as weak equations, since one must be
careful to use these equations only after time derivatives and other variations are
calculated. We shall usex to represent the variable of integration for the first
functional in the bracket andy to represent the variable of integration for the
second functional. When there is no possible confusion these variables will be
suppressed. We will also suppress display of the integrals overσ and only show
the integrands.

Since, in general,Ci may have any value on the boundary, we proceed from
Eq. (60). SubstitutingW = gi j Pi

0 P j
0 , and noting thatδQ

δQβ

i

= QQi
β , we have

d Pi
ᾱ

dt
= − δHp

δQᾱ
i

= − 1

12
W Q

1
3 Qi

ᾱδ(x − y)+ Pi
0δ,ᾱ(x − y)

and thus for consistency

1

12
W Q

1
3 Qi

ᾱδ(x − y)− Pi
0δ,ᾱ(x − y) = 0,

which becomes after integration with respect to they variable
1

12
W Q

1
3 Qi

ᾱ + Pi
0,ᾱ = 0. (62)

We assume fixed boundary conditions so that the variation on the boundary is
zero and thus the boundary term is zero. Equation (62) represents 12 secondary
constraints on the theory.

Before proceeding with the constraint algorithm a comment is in order.
Computation ofPi

0,0= [ Pi
0, Hp], yields Pi

0,0= − 1
12W Q

1
3 Qi

0. Hence, we have
1
12W Q

1
3 Qi

α + Pi
0,α = 0 for α = 0, 1, 2, 3. SinceQ

1
3 Qi

α = hi
α and Pi

0 = −2Ci

andW = 4CkCk we see that Eq. (62) along with the dynamics forPi
0 imply that

Ci
, j = 1

6δ
i
j C

kCk which is the Latin form of the field equations.
Proceeding with the algorithm we note that multiplication of Eq. (62) by

Q0
i (x) yields the condition

Q0
i Pi

0,ᾱ = 0. (63)

The computation of further constraints is rather tedious. It will be useful to note

that δQi
α

δQβ

j

= −Qi
βQj

α. Because of Eq. (63) we must require that

0 = [Q0
i Pi

0,ᾱ, Hp
]

= Pi
0,ᾱ,

(
1

2
gi j P j

0 Q
1
3 − Qγ̄

i ,γ̄

)
δ − Q0

i (x)δ,ᾱ(x − y) ·
(

1

2
gjk P j

0 Pk
0 Q

1
3 Qi

0

)
(y)
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After the integration with respect toy we have

0 = 1

2
gi j Pi

0,ᾱP j
0 Q

1
3 − Pi

0,ᾱQγ̄
i ,γ̄ + 1

12

(
gjk P j

0 Pk
0 Q

1
3 Qi

0

)
,ᾱ

Q0
i

= 2

3
gi j Pi

0,ᾱP j
0 Q

1
3 − Pi

0,ᾱQγ̄
i ,γ̄ + 1

36
W Q

1
3 Qk

βQβ

k,ᾱ +
1

12
W Q

1
3 Qi

0,ᾱQ0
i

= 1

36
W Q

1
3

(
−2gi j Qi

ᾱP j
0 Q

1
3 + 3Qi

ᾱQγ̄
i ,γ̄ + Qi

βQβ

i ,ᾱ − 3Qi
0Q0

i ,ᾱ

)
.

In the last line, the secondary constraint Eq. (62) has been used. SinceQ = 0 is
not acceptable, we find that

W = 0 or − 2gi j Qi
ᾱP j

0 Q
1
3 + 3Qi

ᾱQγ̄
i ,γ̄ + Qi

βQβ

i ,ᾱ − 3Qi
0Q0

i ,ᾱ = 0. (64a,b)

Type I Regions.We define Type I regions as simply connected regions of the
space-like surfaceσ whereW ≡ 0. In Type I regions the secondary constraint
Eq. (62) implies thatPi

0,ᾱ = 0 also. We then require that

0= [W, Hp] = −2gi j P j
0

δHp

δQ0
i

= −2gi j P j
0 ·

1

12
W Q

1
3 Qi

0

and sinceW is assumed to be zero, this is automatically satisfied. Thus in the
W = 0 case, the algorithm terminates. The secondary constraints in this case may
be summarized by the four conditions:

Pi
0 = K i , (65)

where K i is constant and lightlike. These represent four first class, secondary
constraints.

Type II Regions.We define Type II regions as simply connected regions of
σ whereW is not identically zero. In this case we assume that−2gi j Qi

ᾱP j
0 Q

1
3 +

3Qi
ᾱQγ̄

i ,γ̄ + Qi
βQβ

i ,ᾱ − 3Qi
0Q0

i ,ᾱ is identically zero. Returning to the constraint
given by Eq. (62) we require that

0 =
[

1

12
W Q

1
3 Qi

ᾱ + Pi
0,ᾱ, Hp

]
= − 1

36
W Q

1
3
(
2Qi

0gkl Q
k
ᾱPl

0Q
1
3 − 3Qi

0Qk
ᾱQγ̄

k,γ̄ + 3Qi
γ̄ Qk

ᾱvγ̄k

+ Qi
ᾱQk

0Qγ̄

k,γ̄ − Qi
ᾱQk

γ̄ vγ̄k − Qk
γ Qγ

k,ᾱQi
0− 3Qi

0,ᾱ
)
.

If we assume thatW and Q are not identically zero, then we have 12 tertiary
constraints:

0 = 2Qi
0gkl Q

k
ᾱPl

0Q
1
3 − 3Qi

0Qk
ᾱQγ̄

k,γ̄ + 3Qi
γ̄ Qk

ᾱvγ̄k + Qi
ᾱQk

0Qγ̄

k,γ̄

− Qi
ᾱQk

γ̄ vγ̄k − Qk
γ Qγ

k,ᾱQi
0− 3Qi

0,ᾱ . (66)
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By multiplication by appropriate factors ofQβ

i we may split these 12 equa-
tions as follows. Multiplication of Eq. (66) byQ0

i implies that 2gi j Qi
ᾱP j

0 Q
1
3 −

3Qk
ᾱQγ̄

k,γ̄ − Qk
βQβ

k,ᾱ + 3Qk
0Q0

k,ᾱ = 0. This is equivalent to the three constraints
given in Eq. (64b). Next, multiplication of Eq. (66) byQᾱ

i yields the single
constraint

Qk
0Qγ̄

k,γ̄ = 0. (67)

Finally, multiplication of Eq. (66) byQβ̄

i results in the conditionsQk
ᾱvβ̄k −

1
3δ
β̄
ᾱ Qk

γ̄ vγ̄k + Qi
0Qβ̄

i ,ᾱ = 0. Using Eq. (67) these nine equations are seen to be trace-
less and hence these eight equations may be used to reduce the number of unknown
Lagrange multipliers from 12 to 4. The result is

vβ̄k = λQβ̄

k + λβ̄Q0
k − Qj

0Qβ̄
j ,γ̄ Qγ̄

k , (68)

whereλ andλβ̄ represent four arbitrary Lagrange multiplier functions. It follows
from Eq. (67) that we must require

0 = [Qk
0Qγ̄

k,γ̄ , Hp
]

= Qγ̄
k,γ̄
δQk

0

δQα
l

(
δα0

(
1

2
gil Pi

0 Q
1
3 − Qβ̄

l ,β̄

)
+ vᾱl

)
+ Qk

0
δQγ̄

k,γ̄

δQᾱ
l

vᾱl

= Qγ̄
k,γ̄
(−Qk

αQl
0

) (
δα0

(
1

2
gil Pi

0 Q
1
3 − Qβ̄

l ,β̄

)
+ vᾱl

)
+ Qk

0(x)δγ̄ᾱ δ
l
kδ,γ̄ (x − y)vᾱl (y)

= −Qγ̄
k,γ̄ Qk

ᾱQl
0vᾱl − Ql

0vᾱl ,ᾱ,

where the constraints have been used and an integration by parts has been per-
formed on the second term. Now using Eq. (68) we find

λ
β̄

,β̄ = −
(

Qk
β̄

Qγ̄
k,γ̄ + Qk

0Q0
k,β̄

)
λβ̄ + Qk

0Qβ̄

kγ̄ Ql
0Qγ̄

l ,β̄ . (69)

This differential equation represents one condition on the 3 multipliersλβ̄ . Finally
we proceed from the constraint given in Eq. (64b).

0 =
[
−2gi j Qi

ᾱP j
0 Q

1
3 + 3Qi

ᾱQγ̄

i ,γ̄ + Qk
βQβ

k,ᾱ − 3Qi
0Q0

i ,ᾱ, Hp

]
=
(
−2gkl P

l
0Qk

βQj
ᾱQ

1
3 + 2

3
gkl P

l
0Qk

ᾱQj
βQ

1
3 + 3Qγ̄

k,γ̄ Qk
βQj

ᾱ − 3Qj
ᾱδ,β̄

+ Qγ
k,ᾱQk

βQj
γ − Qj

βδ,ᾱ − 3Q0
i ,ᾱQi

βQj
0 + 3Qj

0δ,ᾱδ
0
β

)
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·
(
δ
β

0

(
1

2
gjm Pm

0 Q
1
3 − Qγ̄

j ,γ̄

)
+ vβ̄j

)
− 1

6
gkl Q

k
ᾱQl

0gmnPm
0 Pn

0 Q
2
3 .

Substituting forvβ̄j using Eq. (68) and using the constraints Eqs. (62), (64b),
and (67) yield

0 = gkl Q
k
0Pl

0Q
1
3

(
Qi
ᾱQβ̄

i ,β̄ −
2

3
Qi
βQβ

i ,ᾱ − 1

2
Qi

0Q0
i ,ᾱ

)
− 1

12
gkl P

k
0 Pl

0gi j Qi
ᾱQj

0Q
2
3

+ 5Qi
0,ᾱQβ̄

i ,β̄ − 3Qi
0,β̄Qβ̄

i ,ᾱ + 2gkl Q
k
β̄

Pl
0Qi

0Qβ̄
i ,ᾱQ

1
3

− Qi
0Qβ̄

i ,γ̄

(
3Qj

ᾱQγ̄
j ,β̄ + 2Qj

β̄
Qγ̄

j ,ᾱ
)− 1

2
gkl P

k
0 Ql

0,ᾱQ
1
3

+(6Qi
ᾱQβ̄

i ,β̄ + 2Qi
β̄

Qβ̄
i ,ᾱ
)
λ+ (3Qi

ᾱQ0
i ,β̄ − Qi

β̄
Q0

i ,ᾱ
)
λβ̄ + 6λ,ᾱ . (70)

These three equations along with Eq. (69) may be used to solve forλ and the
λβ̄ and since these are first-order differential equations in the lambdas, we ex-
pect that there will be four arbitrary constants in our solutions for the Lagrange
multipliers. This completes the Dirac–Bergmann algorithm. For a summary see
Table I.

For tetrads that satisfy the field equations we may check to determine whether
the tetrad also agrees with the results of the Dirac–Bergmann algorithm. For tetrads
with Ci = 0 orCi constant and lightlike these results are clearly consistent and the
region is Type I. WhenCi is nonconstant and the field equations are satisfied it is
not so obvious because all the tertiary constraints must be checked. For the example

Table I. Results of Constraint Algorithm

Case W = 0 W 6= 0

Primary constraints Pi
ᾱ = 0 (12 first class) Pi

ᾱ = 0 (12 second class)

Secondary constraints Pi
0 = K i , with constant 1

12W Q
1
3 Qᾱ + Pi

0,ᾱ = 0
K i lightlike (12 second class)
(4 first class)

Tertiary constraints None Qk
0Qβ̄

k,β̄ = 0 and

2gi j Qi
ᾱP j

0 Q
1
3 − 3Qk

ᾱQβ̄

k,β̄

−Qk
βQβ

k,ᾱ + 3Qk
0Q0

k,ᾱ = 0
(4 second class)

Gauge fixing constraints 16 required Gauge fixed by constraint algorithm
Degrees of freedom 0 4
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given in Eq. (51), one finds that the tertiary constraints are indeed satisfied and
the solutions for the Lagrange multipliers areλ = − 16x0

7φ + k0x0

φ6 andλᾱ = κᾱφ6,

whereφ = (x0)2− (x1)2− (x2)2− (x3)2, andκα are four arbitrary constants.
At present we do not have a physical interpretation of all the constraints. Recall

that Gauss’s law shows up as one of the constraints in the free electromagnetic field
(Dirac, 1964). We expect that our secondary constraints will also have a similarly
important interpretations.

In the case of Type I regions withPi
0 = 0 we see that the Hamiltonian is con-

sistent with what is expected in a theory that describes gravitation. Multiplication
of Eq. (62) byQᾱ

i implies that14W Q
1
3 + Qᾱ

i Pi
0,ᾱ = 0. By comparison to Eq. (61)

we see thatHp is weakly zero ifPi
0 = −2Ci is zero (Type I). Many investiga-

tors (e.g., Misner, 1957) expect that the correct Hamiltonian for gravity should be
weakly zero.

Of the two types of regions, it would seem that the Type I regions would be
more physically relevant. The 16 first class constraints would correspond to 16
gauge degrees of freedom. All the constraints are first class so that there is no need
for the Dirac bracket. The Type II regions, however, have no gauge degrees of
freedom and the Dirac bracket would be needed to define the symplectic structure
on the 4-dimensional phase space.

4. CONCLUDING REMARKS

4.1. Possible Inclusion of the Strong Interaction

It may be possible to extend our theory to include the strong interaction, by
replacing the real orthonormal tetradhi

µ with a complex orthonormal tetradZi
µ

which is restricted so that the space–time metric

gµν = gi j Zi
µZ j

ν (71)

remainsreal. A bar indicates complex conjugation. That there exist complex tetrads
which yield real metrics may be seen in the following way. It is known (see e.g.,
Barut, 1980) that there exist two complex groups which preserve the canonical
Lorentz metric. One of these groups has complex transformation coefficientst i

m

which satisfy the relationgmn = gi j t i
mt j

n wheregi j = gmn = diag(−1, 1, 1, 1).
This group does not containSU(3) as a subgroup, and hence is of no interest here.
The other group has complex transformation coefficientsTi

m which satisfy the
relation

gmn = gi j T i
mT j

n (72)

where a bar indicates complex conjugation. This group containsSU(3) as a proper
subgroup. The components of the complex tetradZi

µ = Ti
mhm

µ are complex valued
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functions of the real space–time coordinatesxα. The complex conjugate ofZi
µ

is just Zi
µ = Ti

mhm
µ becausehi

µ remains real. It is easily seen from Eq. (72) that

Eq. (73) yields the same (real) metric as Eq. (1), i.e.,gµν = gi j hi
µh j

ν . Just as
the real tetradhi

µ provides a richer structure thangµν (a structure which de-
scribes the gravitational and electroweak fields), the complex tetradZi

µ provides
an even richer structure (a structure which offers the possibility for describing the
strong interaction, while still describing gravity with the real metric of general
relativity).

4.1.1. Currents for Strong Isospin and Hypercharge

Working by analogy with Eq. (40), we defineCi by

Ci == −Z−1
(
Z Zνi

)
,ν , (73)

whereZ is the determinant ofZi
µ, and note thatgi j Ci C j , is invariant not only under

real conservative coordinate transformations on Greek indices, but also under com-
plex conservative Lorentz transformations on Latin indices, i.e., transformations
Zm̃
µ = Lm̃

i Zi
µ which satisfy

L j
m̃

(
Lm̃

i , j − Lm̃
j ,i
) = 0 (74)

andgi j = gm̃ñLm̃
i Lñ

j wheregi j = gm̃ñ = diag(−1, 1, 1, 1). For an infinitesimal
complex Latin Lorentz transformation, one easily finds thatLi

m̃ = δi
m + gi j ∈ jm

where∈ jm is anti-Hermitian. The conservative condition, Eq. (74), is satisfied if
and only ifε i

m,i − ε i
i ,m = 0. From theε i

m one can read off the generators for the
transformation coefficientsLi

m̃.
Field equations may be derived from a variational principle with Lagrangian

gi j Ci C j . The reality constraint ongµν is just

gi j

(
Zi
µZ j

ν − Zi
µZ j

ν

)
= 0.

This constraint may be imposed by using Lagrange multipliers, and for the density

h, we haveh = √−g =
√

Z Z. Thus, our variational principle is

δ

∫ [
gi j Ci C j +3µνgi j

(
Zi
µZ j

ν − Zi
µZ j

ν

)]√
Z Z d4x = 0 (75)

whereZi
µ, Zi

µ and3µν are varied independently. (Independent variation ofZi
µ

and Zi
µ is equivalent to varying the real and imaginary components ofZi

µ inde-
pendently.)
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After integration by parts, Noether’s theorem gives (conserved) currents cor-
responding to strong isospinI3 and hyperchargeY

I3 = C1Zα1 − C1Zα1 − C2Zα2 + C2Zα2
(76)

Y = C1Zα1 − C1Zα1 + C2Zα2 − C2Zα2 − 2C3Zα3 + 2C3Zα3 .

It is clear that our discussion of the strong interaction is more speculative than the
discussions in previous sections. Much more work must be done before it may be
possible to make a more definite claim.

The results presented in this paper indicate that this theory may lead to the
fundamental theory that unifies all the known forces. The theory contains no ad-
justable parameters. The standard model, by contrast, requires that many parameter
values and symmetries must be “put in by hand.” The reason for this is that the
standard model does not unify the electroweak and the strong interactions. And,
of course gravity is not included in the standard model. In our theory, by contrast,
gravity is present from the outset, and all forces are completely unified. Indeed, our
theory is constructed by analogy with general relativity, while theU (1)× SU(2)
electroweak theory and theSU(3) strong theory (the building blocks of the standard
model) are constructed by analogy with electromagnetism.

4.2. Quantization of the Theory

The theory thus far is at the classical level. Before quantization via canonical
methods or path integrals, gauge constraints must be introduced to fix the gauge.
Type I regions would require 16 gauge constraints, while none are required for
Type II regions. Alternatively one may introduce 16 fermionic ghost variables
and their conjugate momenta in Type I regions (Henneaux and Teitelboim, 1992;
Sundermeyer, 1982; Weinberg, 1996). These extra degrees of freedom act as neg-
ative degrees of freedom which have the effect of fixing the gauge.

The quantized theory must be examined to determine whether it is finite,
or, at least, renormalizable and free of anomalies. There are several reasons for
believing that the quantized theory will be either finite or renormalizable. First,
Rosenfeld (1930) noted certain advantages that tetrads present for the quantiza-
tion of gravity. Second, our LagrangianCµCµ involves only first derivatives ofhi

µ;
whereas the Ricci scalarR, the Lagrangian for gravitation alone, involves first and
second derivatives ofgµν . Third, the conservation group is much larger than the
diffeomorphisms, and experience with gauge theory suggests that larger groups
offer more promise of successful quantization. Fourth, we recall that the theory of
weak interactions alone was not renormalizable, but the theory became renormal-
izable with the inclusion of electromagnetism. This provides hope that gravitation
will become renormalizable with the inclusion of the electroweak and/or strong
interaction.
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4.3. Fundamental Geometrical Issues

It is possible that certain geometric principles could lead to a determination
of coupling constants and masses. The larger symmetry of the conservation group
suggests that the basic geometry is not a space of points, but a space of paths.
Hence, we would investigate connections between this theory and string theory.
It appears possible that the path-space could provide a geometrical foundation
for string theory. The need for such a foundation has been emphasized especially
by Witten (1988), and Schwarz (1988) has noted that this foundation could be
provided by a “stringy space.”
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